HUGO VERIDIANO GONCALVES

POS-PROCESSAMENTO DE CODIGO DE ELEMENTOS FINITOS NA
ANALISE DE COLUNAS DE PERFURACAO

Trabalho de Concluséo de Curso
apresentado a Escola Politécnica da
Universidade de S&o Paulo para obtencéao
do diploma de Engenharia de Petrdleo.

SANTOS

2020

HUGO VERIDIANO GONCALVES

POS-PROCESSAMENTO DE CODIGO DE ELEMENTOS FINITOS NA
ANALISE DE COLUNAS DE PERFURACAO

Trabalho de Concluséo de Curso
apresentado a Escola Politécnica da
Universidade de S&o Paulo para obtencéao
do diploma de Engenharia de Petrdleo.

Area de concentrac&o: Perfuracdo

Orientador: Ronaldo Carrion

SANTOS

2020

FICHA CATALOGRAFICA

Gongalves, Hugo Veridiano

POS-PROCESSAMENTO DE CODIGO DE ELEMENTOS FINITOS
NA ANALIS DE COLUNAS DE PERFURACAO / H.V. Gongalves —
Séo Paulo, 2020.

43 p.

Trabalho de Formatura — Escola Politécnica da Universidade
de S&o Paulo. Departamento de Engenharia de Minas e de
Petréleo.

1.Python 2.Método dos Elementos Finitos 3.P0s-
processamento.
I.Universidade de Sédo Paulo. Escola Politécnica. Departamento
de Engenharia de Minas e de Petrdleo Il.t.

AGRADECIMENTOS

Gostaria de agradecer a Deus pelas oportunidades e pelos sutis toques no meu

caminho.
Agradecer ao meu pai, Ttel, que me vigia e me guarda de um lugar melhor.

A minha mae Fernanda, por fazer o possivel e impossivel para garantir minha

educacéo e por criar filhos sadios emocionalmente.
A minha v6 Regina, por sempre incentivar meus estudos e discutir conceitos comigo.

A minha tia Renata e meu irmao Pedro, que deram suporte para que eu conseguisse

sempre atender as minhas aulas.

A minha namorada Lara, por esses anos de incrivel companheirismo e suporte.
Obrigado por ter passado os domingos estudando ao meu lado e por compreender e

me ajudar com as minhas angustias.

Ao meu orientador Prof. Ronaldo Carrion pela grande parceria neste ano e por ter

agarrado este projeto comigo.

Aos meus colegas do curso de Engenharia de Petroleo da Escola Politécnica da
USP, muito obrigado por todas as experiéncias e aprendizados que me

proporcionaram.
A todos os docentes e funcionarios, muito obrigado.

Ao futuro Hugo, que possa encontrar boas lembrancas da época da faculdade ao ler

este trabalho novamente. NOs conseguimos.

“Aqueles que séao loucos o suficiente
para achar que podem mudar o mundo,
sdo os que realmente o fazem.”

(Steve Jobs)

RESUMO

Com o avanco da tecnologia na area de Engenharia de Petrdleo, novos métodos vao
surgindo para ajudar na realizagdo das rotinas executadas. Softwares
computacionais sao grande parte desse avanco, pois auxiliam os profissionais tanto
em atividades simples do cotidiano quanto em projetos que demandam mais tempo
e atencdo. No entanto, boa parte desses softwares sdo pagos e possuem pouca
abertura para que o usuario faca adaptacdes. Pensando nisso, este trabalho tem
como objetivo produzir um codigo computacional na linguagem Python que realize o
pos-processamento automatizado e otimizado do célculo de tensbBes e
deslocamentos obtidos pelo método dos elementos finitos em colunas verticais,
fornecendo graficos que auxiliem na compreensdo dos resultados, utilizando um
coédigo autoral. Foram obtidos graficos para diferentes testes realizados que
puderam representar os resultados de forma clara e facilitar a compreensdo ao

realizar a leitura.

Palavras-chave: Python, Método dos elementos finitos, Pés-processamento.

ABSTRACT

With the advancement of technology in the area of Petroleum Engineering, new
methods are emerging to give help in carrying out the routines performed.
Computational softwares are a big part of this advance, as it helps professionals both
in simple daily activities and in projects that demand more time and attention.
However, most of those softwares are paid for and have small openings for the user
to make adaptations. With this in mind, this work aims to produce a computational
code in Python that performs the automated and optimized post-processing of stress
and displacement calculations of vertical columns, obtained by the Finite element
method, providing graphics that assist in the understanding of the results, using a
original code. Graphs for different performed tests were obtained, representing the

result clearly and making it easier to understand.

Keywords: Python, Finite element method, Post-processing.

LISTA DE FIGURAS

Figura 1 - Exemplo de representacgéo utilizando a biblioteca FEnICS. 12

Figura 2 - Representagdo de uma geometria complexa dividida em uma malha de

€1eMENTOS fINITOS. ..o e e e e 15
Figura 3 - Exemplo de cddigo escrito em PYthoN ..o 18
Figura 4 - Exemplo de utilizagéo da biblioteca Matplotlib..............ccccooiiiiiiiiiiiiiinnns 19
Figura 5 - Fluxograma do desenvolvimento dos cOdigos.cccceemmmmmniininnnnnnnnnnns 21
Figura 6 - Exemplo de arquivo de texto utilizado como iNPUL............cccceeiiiminnninnnnnnns 23
Figura 7 - Matriz de rigidez elementar............cccoooimiii e 24
Figura 8 - Exemplo de estruturacéo da matriz de rigidez global...............cccevvvvvnnnnn. 26

Figura 9 - Transformacéo de dados unidimensionais para dados bi-dimensionais...28
Figura 10 - Exemplo de distribuicdo de forcas no objeto..........ccceevvvciiviieeeveeeiiinnnnnnn. 30
Figura 11 - Exemplificacdo dos dados de entrada do primeiro teste...........c.cccvueen.. 31
Figura 12 - Pos-processamento dos dados do primeiro teste com dez elementos. ..32
Figura 13 - Pos-processamento dos dados do segundo teste com cem elementos. 33
Figura 14 - Pos-processamento dos dados do terceiro teste com mil elementos.35
Figura 15 - Pos-processamento do terceiro teste com forca de icamento menor.36

Figura 16 - Comparacao entre o tempo de execucdo dos programas e a variacao do

NUMEI0 A€ CIEMEBNLOS ... 37

LISTA DE TABELAS

Tabela 1 - Propriedades do SEgUNAO tESTE.........oevviiiiiiiiiiiiiiieiieeeeeeee e 33

Tabela 2 - Propriedades do terceiro teSte.uuuiiiiiiiiiiiiiiiiiie e 34

1

SUMARIO

INTRODUGAO ...ttt enenen, 10
1.1 ODJOLIVO oo 12
1.2 JUSHIFICATIVA. ..o e 13
1.3 Organizacado do trabalho ... 14

REVISAO BIBLIOGRAFICAcoooviiiie ittt 15
2.1 Método dos elementos fiNItOS......cccuviiiiiiiie e 15
2.2 Implementag&o computacional do Método dos elementos finitos 16

2.2.1 Abordagem histérica da implementacdo computacional do MEF 17
2.3 PYthON (o 17
2.4 POs-processamento em Python ... 18

2.4.1 MatplothiD ccoceeeee e 19
2.5 Tensdes em COlUNAS VEITICAIS.......cccurriiiiiieeiiiiieee e 20

METODOLOGIA ... e e e e e e e e e e eennaas 21

3.1 ProCeSSamMENTO.....uuuuiiiiiiiiiiiiiii e 22
3.1.1 DadOS A€ ENIATAuveeeiieeeeiiiiiiiiiei et 22
3.1.2 Leitura dOS dAUOSeveiiiieeeiiiiiiiiiee ettt e e e 23
0t UG T Y >][0 1 SRR 24
G 700 0 S 4T [o [2SR 24
3.1.5 CaITegamMENTO . .ccuu it 26
3.1.6 SIStEMA lINCAI ... 27
3.1.7 Vetores fIN@ISooiiiiiiiieie e 27

3.2 POS-ProCeSSAMENTO ...cceiiiieiiiiie e 27
3.2.1 Tratamento dOS dadOsS........ccoovieiiiiiii i 27

3.2.2 Setup dOS grafiCOSuuuuiiii i 29

4 RESULTADOS ...ttt e e et e e e e e e ennnes 30

4.1 Teste COM 10 EleMENTOSuuuuuiiiiiiiiiiiiiiiiii s 30
4.2 Teste COmM 100 EleMENTOSuuuuuiriiiiiiiiiiiiiiiii i 32
4.3 Teste COmM 1000 €leMENTOSuuuuuuuiiiiiiiiiiiiiiiiiiiii e 34
4.4 TempoO de ProCESSAMENTO ...uuuuuuururuuiuiiiiiiiiiiiittiieiaaeeeeb e 37
5 CONCLUSAOciiiiteiieeeee ettt ettt 39
5.1 Contribuigdes do trabalno............coovviiiiiiiiiiiiiiiiii 39
5.2 TrabalhoS fUTUIOSoiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee e 39
REFERENCIAS ..ottt ettt e e s e e 40

APENDICE A - FUNCAO PRINCIPAL DO POS-PROCESSAMENTO..................... 42

10

1 INTRODUCAO

Com o avanco da tecnologia na area de Engenharia de Petréleo, novos métodos vao
surgindo para ajudar na realizagdo das rotinas executadas por profissionais da area.
Com o surgimento dos computadores e dos softwares computacionais, alguns
problemas, que antes demandavam muito tempo e esforco humano para serem

calculados, foram sendo ressignificados.

Ano ap6s ano surgem renovacgfes na parte tecnoldgica da industria, que altera sua
dindmica operacional para se alinhar as novas tecnologias, que acabam por trazer
um resultado positivo financeiramente. Os softwares computacionais sdo grande
parte dessa revolugao tecnologica, pois auxiliam os profissionais tanto em atividades

simples do cotidiano quanto em complexos projetos demorados.

No entanto, boa parte destes softwares tem licencas pagas e sado desenvolvidos por
grandes empresas para serem vendidos para outras grandes empresas com claros
objetivos comerciais. Alguns destes softwares possuem licencas estudantis para
universidades, mas a dinamica de utilizacdo dos programas acaba fazendo com que
os estudantes se familiarizem com o uso dos mesmos para se adequarem a utiliza-
los no mercado de trabalho, sem que entendam como o0s programas realizam suas

funcoes.

Boa parte dos softwares comerciais possui um cédigo fechado, de modo que o
usuario ndo tenha acesso a implementacdo do mesmo. Isso acaba por gerar
dificuldades na compreenséo do funcionamento do programa e de como ele realiza
seus calculos, além de dificultar que o usuario personalize o programa e adicione
extensdes que sejam Uteis para ele mesmo, vedando novamente o aprendizado do

aluno.

No entanto, existem softwares e plataformas de programacéao de “cédigo aberto”, ou
seja, que sdo manipulaveis pelo usuario, de forma que o usuario possa alterar o
programa ou utilizar dessas linguagens para escrever o cédigo de um programa

préprio, o qual realizara as funcdes e os célculos que deseja.

11

Premissas béasicas de liberdade de expressdo, acesso a informacao e coletividade
do conhecimento, que deve ser disponibilizado de forma democratica, sdo principios
do cédigo aberto (STEFANUTO et al., 2005).

Uma das principais linguagens de programacéo de codigo aberto é o Python. Uma
linguagem de grande potencial e muito usada academicamente pela facil leitura e
compreensao da sintaxe, além de oferecer suporte para bibliotecas externas que
podem ser utilizadas para simplificar o cddigo do usuério.

Entre essas bibliotecas que podem ser implementadas, existem véarias que poderiam
auxiliar neste trabalho para simplificar o cédigo do programa a ser desenvolvido,

entre elas destacam-se Fipy, FEnICS e Sfepy, todas escritas em Python.

No entanto, o uso dessas bibliotecas com foco exclusivo nos tépicos alvo a serem
abordados, desvia da filosofia proposta deste trabalho, que € desenvolver um cédigo

autoral.

Em muitos programas nao-comerciais desenvolvidos para o calculo de equacdes
diferenciais, principalmente o de resolucdo pelo método dos elementos finitos, um

dos grandes entraves € a representacao dos dados apds serem processados.

Os programas geralmente “retornam” os dados de forma numérica, dificultando a
compreensao e a visualizacdo da resolucdo do problema. Assim, utilizar programas
que realizem o “pés-processamento” destes calculos é importante para que haja

compreensao visual dos calculos realizados.

O poés-processamento € a etapa em que é realizado o tratamento dos dados obtidos
de forma a representar as grandezas envolvidas no problema com clareza e
objetividade (PENNA, 2007), auxiliando na compreensao dos resultados obtidos e

na interpretacdo dos mesmos.

Com o pos-processamento, os dados numéricos se tornam representacoes
bidimensionais ou até tridimensionais dos resultados, de maneira a facilitar a
compreensao. Como exemplo dessas representacdes, pode-se mencionar 0sS

graficos de calor (heatmaps), que utilizam a cor dos elementos como uma grandeza.

12

Um exemplo de poés-processamento é o da Figura 1 abaixo, realizado por um

programa que utiliza a biblioteca FEnICS.

Figura 1 - Exemplo de representacao utilizando a biblioteca FEnICS.

Fluido Velocidade

Fonte: (ABREU; CATABRIGA, 2017).

Entende-se que o célculo das tensées em colunas verticais € essencial para um
projeto de perfuracédo, tendo em vista que as condicbes em que a utilizacdo do
equipamento ocorre podem ser perigosas para as pessoas que trabalham no
projeto. Geralmente esses equipamentos sdo testados em laboratorio em condi¢cbes
desejadas de carregamento (VAISBERG et al, 2002).

Assim, pretende-se realizar célculos por meio de um programa na linguagem Python
a fim de computar as tensdes distribuidas em colunas verticais de petroleo,
realizando os calculos pelo método de elementos finitos além de proporcionar a
visualizacdo desses calculos obtidos por meio de graficos que auxiliem a

compreensao do resultado.

1.1 Objetivo

O trabalho tem como objetivo desenvolver um programa na linguagem Python para
realizar calculos de tensdes em colunas verticais pelo método dos elementos finitos
e realizar o pos-processamento dos resultados destes célculos gerando gréaficos que

possam facilitar a compreensao da solugcéo desenvolvida.

Os obijetivos especificos desse trabalho sao:

13

a) Apresentar a metodologia do método dos elementos finitos como forma de
solucao dos problemas propostos.

b) Produzir rotinas em Python para a producéo do pds-processamento.

c) Apresentar os poés-processamentos obtidos em formas de graficos claros

produzidos pelo programa.

1.2 Justificativa

Atualmente na Engenharia a utilizacdo de softwares para a realizacdo das mais
diversas tarefas é necessaria. A simplificacdo de célculos complexos permite mais
eficiéncia em projetos e rapidez na entrega de informacdo. No entanto, boa parte
dos softwares se apresenta com pouca “disposicdo” para que o usuario faca
alteracdoes de acordo com seu interesse. A elaboracdo de sistemas de software
parece envolta em uma "ortodoxia técnica”, e, assim, vista apenas como um
processo “técnico”, a ser realizado por especialistas (CUKIERMAN; TEIXEIRA,;
PRIKLADNICKI, 2007).

Essa perspectiva desestimula que graduandos se proponham a elaborar seus
préprios programas para a execucdo de diferentes tarefas, e assim, acabam se

adaptando a utilizacdo de softwares de codigo fechado.

A justificativa pessoal para a escolha do tema envolve a vontade de criar um
programa “do zero”. Isso permite verificar todo o embasamento tedrico presente nos
célculos que o programa realiza e assim ter completo compreendimento do

funcionamento do programa.

Em rotinas de programacdo, o conhecimento pleno do funcionamento de um
programa € essencial para poder reparar possiveis erros que sdo muito comuns nas
fases iniciais da concepcdo do mesmo. Ao utilizar programas adicionais para
desenvolver um software novo, a tarefa de rastrear 0s erros que aparecem no
desenvolvimento do programa fica mais dificil, tornando o processo mais complicado

e menos original.

Utilizando-se de cddigos abertos, pode-se verificar a possibilidade do entendimento

por tras da elaboracdo de um software de célculo de tensdes pelo método dos

14

elementos finitos, utilizando recursos graficos para o0 poOs-processamento dos

resultados obtidos.

Programas de cédigo aberto que calculam por meio do método dos elementos finitos
e produzem gréficos para auxiliar na compreensao dos resultados ndo sdo novidade.
Como mencionado anteriormente, existem bibliotecas em Python com esse
propésito. Portanto, a ideia desse trabalho é escrever um programa autoral que nao
deixe de utilizar bibliotecas externas mas que tenha as partes de calculo do método
dos elementos finitos e pés-processamento feitas de forma autoral.

1.3 Organizagao do trabalho
No capitulo 1 sdo expostos conceitos gerais do trabalho e introducdo dos temas

discutidos no mesmo.

O capitulo 2 conta com uma revisao bibliografica sobre o0 método dos elementos
finitos, implementacdes computacionais do mesmo, abordagens historicas do

método e também sobre a interacdo do método com a linguagem Python.

O capitulo 3 aborda a metodologia utilizada neste trabalho, analisando tanto a
implementacdo do codigo do método dos elementos finitos quanto o pos-

processamento do mesmo.
O capitulo 4 aborda os resultados dos testes realizados.

Por fim, o capitulo 5 analisa o que foi realisado no trabalho e conclui com os

pareceres finais.

15

2 REVISAO BIBLIOGRAFICA

2.1 Método dos elementos finitos

O Método dos Elementos Finitos (MEF) € um método numérico de discretizacao
para obter valores aproximados de solucdes de equacdes diferenciais. O método
realiza a subdivisdo do dominio em pequenas partes com geometrias conhecidas,

denominadas elementos finitos (MEEK, 1996).

O procedimento consiste em realizar a solugdo de forma aproximada para as
equacdes de campo em um subdominio, para em seguida por um processo de
“assemblagem” obter a solugdo em todo o dominio, preservando-se a continuidade

ou o equilibrio dos nés entre os elementos (MEEK, 1996).

O conceito da divisdo do dominio em partes menores possui alguns beneficios,
como a representacdo de geometrias complexas em modelos mais simples
compostos por geometrias basicas. Com isso, a identificacdo de efeitos localizados

se torna possivel.

As subdivisbes modeladas em geometrias basicas sdo unidas por “nds”, que séo
pontos em comum nhas arestas das subdivisbes. Um exemplo da divisdo de um

modelo em uma malha de subdivisbes € apresentado Figura 2.

Figura 2 - Representagdo de uma geometria complexa dividida em uma malha de elementos finitos.

Fonte: (ABREU; CATABRIGA, 2017).

16

N&o hd como pontuar um momento na histéria como nascimento do método dos
elementos finitos. Acredita-se que o método tenha surgido como uma solugdo para
problemas no campo de analises estruturais nas areas de Engenharia Civil e
Engenharia Mecéanica. Ha diversas personalidades a serem nomeadas como

pioneiras no estudo do MEF.

Richard Courant, na década de 1940, foi um dos primeiros a desenvolver a idéia de
aproximar o dominio por subdominios triangulares finitos para resolver um problema
de equacdes diferenciais de segundo grau (GANDER; WANNER, 2012).

Walter Ritz foi um fisico-matematico desenvolvedor do Método de Ritz. O principio
do método consiste na definicdo de um espaco finito de funcdes para achar uma
aproximacao para a solucdo do problema por meio de combinacfes lineares das
fungbes determinadas. Ritz utilizou seu método na mecanica quantica, na area de
linhas espectrais de atomos (GANDER; WANNER, 2012).

Boris Galerkin (nascido em 1871), matematico, engenheiro e ativista politico
soviético desenvolveu um método (Método de Galerkin ou, apds as contribui¢cdes de
Ivan Bubnov (1872-1919), Método de Bubnov-Galerkin) para otimizar a tarefa de se
encontrar um determinado numero limitado de equacdes algébricas para aproximar
uma equacao diferencial. O método atual derivado se chama Método de residuos
ponderados (GANDER; WANNER, 2012).

O método de Galerkin € um bom exemplo de um método facil para codificar, sendo
assim um dos mais utilizados em programas que fazem uso do método dos

elementos finitos.

2.2 Implementacdo computacional do Método dos elementos finitos

Como demonstrado no item 2.1, as bases do calculo realizado no método dos
elementos finitos jA eram conhecidas ha tempos, no entanto o niamero grande de

célculos a serem realizados impedia a utilizacdo do mesmo.

b

A precisdo do método esta atrelada a quantidade de subdivisdes presentes no

modelo, quanto mais e menores subdivisdes, melhor a precisdo. No entanto com o

17

aumento de subdivisbes, o numero de calculos a serem realizados cresce
(GANDER; WANNER, 2012).

Esse problema pode ser contornado ao “delegar” ao computador a tarefa de realizar

esses calculos, apresentando apenas as condi¢cdes que devem ser calculadas.

2.2.1 Abordagem histérica da implementacdo computacional do MEF

Edward L. Wilson é considerado um dos precursores de andlises computacionais
utiizando o método dos elementos finitos. A autoria do primeiro programa
computacional utilizando o método dos elementos finitos é atribuida a ele, em uma
tese de mestrado orientada por Ray Clough, publicada em 1962 (CLOUGH;
WILSON, 1962).

Em 1996, Graham Archer desenvolveu um programa que realiza célculos em
elementos finitos utilizando a linguagem C++, com foco no desenvolvimento do
programa com programacao orientada a objetos. O programa foi feito de forma a ser
replicado de uma maneira facil e que aceitasse a adicdo de novas funcdes
(ARCHER, 1996).

Atualmente o software FEniCS é amplamente utilizado para analises utilizando o
método dos elementos finitos. O projeto comecou a ser desenvolvido em 2003 como
uma pesquisa colaborativa entre a Universidade de Chicago e a Universidade de
Chalmers, na Suécia. O software é gratuito e aberto e oferece bibliotecas em
diferentes linguagens, inclusive Python, para que usuarios utilizem dos recursos da
melhor maneira possivel (LOGG; MARDAL; WELLS, 2011).

2.3 Python

Python é uma linguagem de programacdo de alto nivel de cdodigo aberto
caracterizada pela facil legibilidade dos cédigos, o que faz com que a linguagem seja

muito comum no ambiente académico.

Foi desenvolvida por Guido van Rossum em 1990 no Instituto Nacional de Pesquisa
para Matematica e Ciéncia da Computacdo da Holanda (CWI) (BORGES, 2010).

18

Python sempre teve um ideal de gratuidade, codigo aberto, disponibilidade e
acessibilidade (é possivel programar em Python em diversos sistemas operacionais,
assim como celulares e tablets, entre outros sistemas) e com um foco principal na

clareza da sintaxe.

A interface em Python, como na Figura 3, pode ser usada para realizar os célculos e

traduzir complexos modelos cientificos em codigos de elementos finitos.

Figura 3 - Exemplo de cédigo escrito em Python

HELEMS [Eid.readline ())

fid.readline ()

HHOS = (fid.readline ())

fid.readline ()

Fonte: Autoria propria (2020)

A linguagem de programacdo em Python pode ser muito eficiente em analises
numéricas pela facilidade na sintaxe e boa relagcdo com tratamentos de dados para

obter uma interpretacéo dos resultados.

2.4 Poés-processamento em Python

Diversas bibliotecas que podem ser importadas para ajudar no pos-processamento
dos dados obtidos pelo método dos elementos finitos j4 foram desenvolvidas em
Python. Entre as que realizam o célculo do método e fazem o pds-processamento,
podemos citar FiPy, SfePy e principalmente FEnICS, que tem suporte ndo s6 em

Python mas em outras linguagens.

19

2.4.1 Matplotlib

Matplotlib € uma biblioteca de software desenvolvida em Python para a elaboracéo
de graficos e recursos visuais para visualizacdo de dados, oferecendo diversos
modelos para que os dados sejam representados. Foi desenvolvida por John Hunter
em 2003 e continuada por Michael Droetboom e Thomas Caswell apds o falecimento
do autor original (HUNTER, 2007).

A interface de programacdo orientada a objetos oferece graficos similares aos
graficos de MATLAB, mas com o intuito de ser um coédigo open source, €

programado em Python e ndo possui nenhum tipo de licenca ou restri¢ao.

Na Figura 4 é possivel ver um exemplo de grafico que pode ser desenvolvido
utilizando a biblioteca Matplotlib.

Figura 4 - Exemplo de utilizagdo da biblioteca Matplotlib

Fonte: HUNTER et al, 2020

20

2.5 Tensdes em colunas verticais

Um dos problemas mais comuns em operagdes de perfuracdo utilizando colunas
verticais € a falha por fadiga, que faz com que o custo da perfuragcdo aumente de
forma significativa (ZHENG et al., 2014).

Embora haja diversos estudos na area e o assunto seja discutido frequentemente, a
frequéncia em que esses eventos ocorrem continua alta. De acordo com Brun, Aerts
e Jerkg (2015), os custos com perfuracdo e completacdo representam de 40% a
50% do total do CAPEX em operac6es médias. Em maiores operacdes estes custos

chegam a ser de 65%.

O estudo das tensdes em colunas verticais pode ser um grande aliado na reducao
dos custos de operacdes de perfuracéo, visto que parte das falhas por fadiga ocorre
devido as concentracdes de tensdes (VAISBERG et al., 2002).

21

3 METODOLOGIA

Para realizar o processamento dos dados a partir de um certo input, foi necessario
desenvolver um programa que realizasse o calculo do método dos elementos finitos.
O orientador Prof. Ronaldo Carrion (2020)* forneceu um programa de autoria prépria

desenvolvido na linguagem MATLAB para realizar os célculos.

Este programa foi traduzido para a linguagem Python para ser integrado com o
programa desenvolvido para realizar o pés-processamento dos dados e fornecer os

recursos visuais.

Na Figura 5 pode-se visualizar o fluxograma do desenvolvimento dos codigos.

Figura 5 - Fluxograma do desenvolvimento dos cédigos.

Dados de Leitura Arranios
entrada dos dados J
Q
=
5 Carregam Rigidez Rigidez
8 ento global Elementar
S
[
Sistema Vetores
: e Resultado
linear finais
(@]
E —
e _
£
§ - . Tratar os
] Pds-processamento
9 dados
5_ _
0
[

Fonte: Autoria prépria (2020).

! Cadigo fornecido pelo orientador do trabalho, Prof. Dr. Ronaldo Carrion, para adaptacéo e traducéo
para linguagem Python

22

3.1 Processamento

O cdbdigo original em MATLAB que realizava a parte de processamento do
programa, era dividido em diversas funcdes (como observado no fluxograma da

Figura 5) que eram compiladas em um programa principal.

Na traducdo para Python optou-se por escrever todas as funcdes em um sO
programa (no mesmo arquivo), a fim de centralizar e simplificar o processo de

producéo do codigo.

Naturalmente, € comum dividir programas em codigos diferentes e compila-los em
um so6 cadigo. Isso auxilia no desenvolvimento do programa pelo fato de que quando
sédo realizados testes para verificar o funcionamento mesmo, um programa
fragmentado € mais facil para identificar e solucionar erros no codigo. A decisdo de

centralizar o programa foi uma questao de preferéncia pessoal.
Nos topicos abaixo sdo abordadas as etapas de funcionamento do programa
descritas na Figura 5.

3.1.1 Dados de entrada

Os dados de entrada sdo fornecidos em um arquivo de texto com extensao .txt que
sera lido pelo programa. O formato dos dados contidos nesse arquivo € descrito na

Figura 6 abaixo:

23

Figura 6 - Exemplo de arquivo de texto utilizado como input

1 2

210E9 1E-3
210E9 1E-3 Propriedades dos elementos

210E9 1E-3

;
;
1 1.0 0.0 ,

2 0.0 1.0
3 0.0 0.0

1 1 1

3 0 0

1 -8E6 -7EB

3 0 0

1 2 3

3

1

: " ropiis oo
3

Fonte: Autoria prépria (2020).

3.1.2 Leiturados dados

A funcado que realiza a leitura dos dados esta no programa principal. Esta funcao 1é
os dados de entrada e armazena os valores em variaveis que serdo utilizadas nas

proximas funcoes.

As variaveis que o programa |é e retorna sdo: Numero de elementos, numero de
nos, coordenadas do n6é em x e y, condicdbes de contorno do n6 em x e vy,
carregamento do n6 em x e y, conectividade dos elementos e propriedades dos

elementos (médulo de Young e area).

24

Com exce¢do do numero de elementos e do nimero de nds que sdo escalares

inteiros, todos os outros outputs da funcdo sao matrizes (listas de listas).
3.1.3 Arranjos
Esta funcéo calcula os arranjos com e sem as condi¢cdes de contorno a partir dos

vetores e escalares obtidos nos dados de entrada.

Os arranjos realizam a definicdo da posicdo dos elementos e ndés na matriz de
rigidez que ir& compor o sistema linear a ser resolvido para se obter os vetores de

solucdo.
3.1.4 Rigidez

As funcgBes abaixo calculam as matrizes de rigidez utilizadas no programa.
3.1.4.1 Rigidez elementar

Funcao utilizada para calcular a matriz de rigidez de um elemento do objeto. Retorna

uma matriz 4x4 que ird compor a matriz global de rigidez.

A patrtir de informacfes do comprimento e coordenadas do elemento, é obtido um
angulo 6, que fornece os parametros seno e cosseno. A matriz retornada tem seu

formato apresentada na Figura 7 abaixo:

Figura 7 - Matriz de rigidez elementar

(a)(cos?) (a)(sen)(cos) (a)(-cos?) (a)(-sen)(cos)
(a)(sen)(cos) (a)(sen?) (a)(-sen)(cos) (a)(-sen?)

(a)(-cos?) (a)(-sen)(cos) (a)(cos?) (a)(sen)(cos)
(a)(-sen)(cos) (a)(-sen?) (a)(sen)(cos) (a)(sen)

Fonte: Autoria prépria (2020).

25

Onde a representa a seguinte multiplicagéo:

Ex A
L

a =

Na equacao acima, “E” representa o0 mddulo de elasticidade do elemento, “A”
representa a Area do elemento e “L” representa a comprimento cartesiano do

elemento.
3.1.4.2 Rigidez global

Funcéo utilizada para calcular a matriz de rigidez de todo o conjunto de elementos.
Realiza iteracdes entre os elementos utilizando-se da funcdo de Rigidez elementar
para retornar a matriz de rigidez de cada elemento e assim compor a matriz de

rigidez global.

A posicao das matrizes de cada um dos elementos na matriz global € definida pelos

vetores obtidos na funcéo de arranjos.

Na Figura 8 abaixo € possivel perceber como é estruturada a matriz de rigidez

global:

26

Figura 8 - Exemplo de estruturagcédo da matriz de rigidez global

Fonte: Autoria prépria (2020).

Onde os quadrados coloridos representam as matrizes de rigidez elementar e an
representa a posicdo da matriz de rigidez elementar do elemento na matriz de
rigidez global, definida pela funcdo de arranjos. A sobreposicdo de matrizes

representa os graus de liberdade compartilhados entre os elementos.

3.1.5 Carregamento

Esta funcéo realiza o calculo do vetor de carregamento para os elementos do

conjunto.

Sao realizados calculos em iteracdes dos graus de liberdade de cada um dos nés, a

fim de se obter um vetor final com o carregamento no conjunto.

27

3.1.6 Sistema linear

Durante a execuc¢do do codigo, € necessario resolver alguns sistemas lineares.

Ha diversas formas de se resolver um sistema linear. Como o método de resolugéo
do sistema linear ndo € do escopo deste trabalho, foi utilizada uma biblioteca externa
para realizar esta tarefa.

O método linalg.solve() da biblioteca NumPy realiza a resolu¢do do sistema linear
utilizando a decomposicédo LU, conhecido método na algebra linear.

3.1.7 Vetores finais

Por fim, com base nos dados calculados, a ultima funcdo realiza o calculo dos

vetores de deslocamento e forgcas em cada um dos nés do conjunto.

A funcdo retorna dois vetores: um para o0s deslocamentos e um para 0sS
carregamentos. Ainda é realizado outro calculo para se obter as tensdes. Por se
tratar de um elemento de barra, basta dividir o carregamento pela area do elemento

correspondente.

3.2 POs-processamento

O pbs-processamento dos dados € realizado em um programa separado, entdo
naturalmente, pela dindmica do Python, o primeiro passo do programa ¢é “importar” a
funcdo principal do programa de processamento para que este realize os calculos

gue fornecem os dados a serem pos-processados.

3.2.1 Tratamento dos dados

Com os dados em posse, um tratamento dos mesmos € realizado. Um primeiro filtro
€ aplicado em valores com médulo abaixo de 1E-10. Para estes valores é atribuido

um valor de 0 para reduzir os ruidos indesejados nos gréaficos a serem fornecidos.

28

Outra alteracdo realizada é a inversdo dos vetores, visto que originalmente, 0s
ultimos dados dos vetores representam os valores “mais acima” na pratica e os
primeiros os “mais abaixo”. Essa inversao € crucial para que a visualizacdo seja
mais bem interpretada, pois assim o grafico possui a orientacdo vertical correta (a
parte de cima da coluna de perfuracéo fica na parte de cima do gréfico e vice-versa).

Para fornecer os graficos foi utilizada a funcdo pcolormesh da biblioteca Matplotlib.
Essa funcéo requer que os argumentos a serem representados estejam definidos
em listas bi-dimensionais (listas de listas). Como os dados que seréo representados
sdo unidimensionais, é necessario transforma-los em bi-dimensionais para que seja

possivel utiliza-los na fungéo pcolormesh.

A transformagdo é simples e ocorre “duplicando” os valores originais do vetor
unidimensional em duas colunas com o vetor, tendo assim uma matriz Nx2 (onde N

€ o tamanho do vetor) em que as duas colunas séo iguais, como descrito na Figura

Figura 9 - Transformacédo de dados unidimensionais para dados bi-dimensionais

— —_ — —_

A
B L

T mmg O™ >

A
B
C
I p L . _
E
F
G

™ m g,
Y

Fonte: Autoria prépria (2020).

29

Além disso, foram desconsiderados os resultados para os deslocamentos e
carregamentos no eixo X, visto que a analise que faremos € unidimensional e estes

resultados seriam nulos.

O fato dos resultados do eixo X serem nulos foi utilizado para validar os resultados
do programa, verificando que os testes realizados forneciam resultados coerentes.

3.2.2 Setup dos gréficos

Como a intencdo do programa é gerar os graficos para que figuem posicionados
lado a lado, visando uma melhor visualizagdo e comparacao entre as grandezas
representadas, foi utilizada a funcdo subplots (matplotlib.pyplot.subplots) para

realizar esta tarefa.

Como o objeto a representar € unidimensional, foi necessario que a variavel de
visualizacdo do eixo x fosse definida como néo-visivel. Isso foi realizado com a
intencdo de ndo confundir o leitor com um dado a mais a ser intepretado na leitura

do grafico.

Para a representacdo dos dados foi utilizada a funcdo pcolormesh
(matplotlib.pyplot.pcolormesh) pois é a principal funcdo dentro da biblioteca
Matplotlib para se produzir "mapas de calor”, tipo de grafico que sera utilizado neste

trabalho.

A funcéo colorbar (matplotlib.pyplot.colorbar) foi utilizada para fazer a legenda

posicionada a esquerda de cada uma das grandezas representadas.

30

4 RESULTADOS

Com o uso dos programas elaborados, foram realizados testes para verificar a
performance do pds-processamento e 0os outputs fornecidos pelo mesmo.

4.1 Teste com 10 elementos

Para o primeiro exemplo testado, foi elaborado um arquivo que simulasse um objeto
de 1000 metros de altura com uma forca positiva de 10*N no topo e dois
carregamentos negativos de 5.10°N distribuidos pelo objeto. O material considerado
foi aco (Médulo de Young (E) = 210.10° N/m?) e a area da secdo transversal
considerada foi de 1,838.102 m? (tubo de 6% in de diametro externo e 5,901 in de
diametro interno) (LYONS e PLISGA, 2005). Uma representacdo dos dados pode

ser visualizada na Figura 10.

Figura 10 - Exemplo de distribuicdo de forcas no objeto

10000N

-5000N

-5000N

T

Fonte: Autoria prépria (2020).

31

Para este teste, a disposi¢do do arquivo de entrada é representada pela Figura 11,
em um formato de arquivo analogo ao representado pela Figura 6 no capitulo 3. As
reticéncias indicam intervalos onde os dados apresentados possuem um formato
semelhante (seguem o mesmo padrdo) que as linhas vizinhas. Assim sendo, 0

arquivo original ndo é exatamente igual ao representado na figura.

Figura 11 - Exemplificac@o dos dados de entrada do primeiro teste.

10

11

1 0.0 0.0

2 0.0 100. 0

11 0.0 1000.0

1 0 0

2 0 1

11 0 1

1 0 0

2 0 0

3 0 0

a 0 -SE3
5 0 0

6 0 0

7 0 0

8 0 -5E3
9 0 0

10 0 0

11 0 1€4

1 1 2

2 2 3

10 10 11

1 210E9 1.838E-2
2 210E9 1.838E-2
10 210E9 1.838E-2

Fonte: Autoria prépria (2020).

O pés-processamento dos resultados deste teste pode ser observado na Figura 12,
onde os trés graficos representam os vetores de deslocamento, carregamento (forca
axial) e tensdo obtidos para o eixo y, com suas respectivas legendas de cores ao

lado esquerdo de cada grandeza, de forma a auxiliar a interpretacao.

A execucgao por completo do programa foi realizada em 0,26 segundos, onde 0,002

segundos foram empregados no processamento e o resto no pds-processamento.

Figura 12 - Pos-processamento dos dados do primeiro teste com dez elementos.

Desloc. y [m]

1000
0.0012
800 0.0010
600 0.0008
0.0006

400
0.0004

200
0.0002
0 0.0000

Carreqg. y [N]

10000

8000

6000

4000

2000

Fonte: Autoria propria (2020).

4.2 Teste com 100 elementos

Tensao y [Pa]

500000

400000

300000

200000

100000

32

No segundo teste foi realizada uma analise com 100 elementos em condi¢des

similares a primeira. A diferenca consta na disposi¢cao das forcas: Ao invés de focos

pontuais de forcas aplicadas, serdo distribuidas forcas negativas em todos os

elementos (além da forca positiva no topo) de modo a simular a agao da “for¢a peso”

agindo sobre o objeto.

O arquivo de dados de entrada foi modelado de modo que a forca positiva no topo

seja inferior & soma das forcas negativas dispostas ao longo do objeto, simulando o

gue ocorre em uma coluna de perfuracdo, onde, na parte inferior do objeto, h&a

compressdo. As informagdes sobre as propriedades do objeto simulado estéo

dispostas na Tabela 1.

33

Tabela 1 - Propriedades do segundo teste

Propriedade Medida
Tamanho da sec¢éo (L) 1000 m
Médulo de Young (E) 210.10° Pa
Densidade (p) 7860 kg/m?3
Diametro externo (OD) 6% in
Diametro interno (ID) 5.901 in
Forca de icamento (F) 1.10°N
Forca peso nos nos (P) -14172,9 N

Assim, o pés-processamento dos resultados é observado na Figura 13, onde sdo
apresentados os graficos de deslocamento, carregamento e tensdo no eixo y. O
tempo de execucdo para este exemplo foi de 0,3 segundos, onde 0,05 segundos
foram empregados no processamento e 0,25 segundos no pds-processamento.

Figura 13 - P6s-processamento dos dados do segundo teste com cem elementos.

Desloc. y [m] Carreqg. y [N] Tensao y [Pa]
le7

1000 1000000
800000
800 0.06
600000
600 0.04 400000
200000
400 0.02
200
0.00 —200000 -1
0 —400000 —2

Fonte: Autoria prépria (2020).

Ln

+a

L

MJ

=

=]
=]

Na Figura 13 é possivel observar valores negativos de deslocamento, carregamento
e tensao, devido ao estado de compressédo na regidao entre y = 200 e y = 400 metros.

34

4.3 Teste com 1000 elementos

Para o teste com 1000 elementos, optou-se por realizar uma simulacdo mais
proxima a realidade, com diferentes dimensdes de diametros internos e externos
para diferentes tamanhos de sec¢des, assim, simulando as partes que compdem uma
coluna vertical de perfuragéo, o Drillpipe, o Heavyweight drillpipe e o Drillcollar
(LYONS e PLISGA, 2005).

As dimensfes e propriedades utilizadas em cada uma das sec¢Oes definidas, assim

Como suas respectivas extensoes verticais, sdo descritas na Tabela 2.

Assim como no segundo teste, foi distribuida uma forca peso para cada um dos nos

(exceto o ultimo, onde se aplica uma forca positiva de icamento).

Tabela 2 - Propriedades do terceiro teste.

Propriedade Drillpipe HW Drillpipe Drillcollar
Tamanho da secéo (L) 800 m 100 m 100 m
Méddulo de Young (E) 210.10° Pa 210.10° Pa 210.10° Pa
Densidade (p) 7860 kg/m3 7860 kg/m?3 7860 kg/m?
Diédmetro externo (OD) 6% in 4% in 5.00in
Diametro interno (ID) 5.90 in 2.25in 2.25in
Forca de icamento (F) 1,55.108 N - -

Forca peso nos nos (P) -1417,3 N -2373,5 N -3115,9 N

Fonte: Adaptado de (LYONS e PLISGA, 2005).

Pode se observar que a area da secédo transversal dos nés do HW Drillpipe e do
Drillcollar sdo maiores, pois apresentam uma diferenca (OD — ID) maior que a

respectiva diferenca para o Drillpipe. Assim sendo, temos que:
Adc > AHde > Adp

Onde Aq representa a Area da secfo transversal do Drillcollar, Anwdp representa a

area da secao transversal do HW Dirillpipe e Aqgp @ érea da secéo do Drillpipe.

Como, nesta simulacéo, todas as partes da coluna sao feitas com o mesmo material
(aco), as trés partes possuem densidades iguais. Assim sendo, a for¢a peso respeita

a mesma proporgao das areas descritas, assim como observado na Tabela 2.

35

Assim como nos testes anteriores, a coluna encontra-se engastada no n6 y = 0,

prevenindo o movimento do mesmo independente das forcas aplicadas.

O resultado do p6s-processamento do teste realizado com 1000 elementos pode ser
observado na Figura 14. O tempo total de execucdo do programa foi de 4.24
segundos, onde 3,98 segundos foram empregados no calculo do processamento e

0,26 segundos no célculo do pds-processamento.

Figura 14 - P6s-processamento dos dados do terceiro teste com mil elementos.

Desloc. v [m] Carreg. y [N] Tensao y [Pa]
le7

1000
0.12
1400000
800 0.10 1200000
0.08 1000000
600
800000
0.06
600000
400
0.04 400000
200 000 200000
0 0.00

Fonte: Autoria propria (2020).

oo

|

h

un

e

L

kJ

=

o
=]

E possivel observar que a distribuicio de tensdo apresenta uma diferente
linearidade entre y = 0m ~y = 200m e entre y = 201lm e y = 1000m. Isso se deve as

diferentes areas da secéo transversal das diferentes partes da coluna.

Pela analise do grafico € possivel observar que a regido onde a Tensdo é nula
encontra-se entre y=Om e y = 100m, o que simula 0 que ocorre na pratica, onde a

variacéo do sinal da tensdo ocorre geralmente no drillcollar.

E possivel observar essa diferente distribuicdo de tensées nas diferentes partes da

coluna ao se aplicar uma forca de icamento menor, o que levaria a regidao de

36

compressdo “mais para cima”’, e assim obteriamos uma regido maior com

deslocamentos negativos.

Assim, foi realizado um teste em condi¢fes iguais ao do terceiro teste, porém com
uma forca de icamento de 1,2.10°N, ante uma forca original de 1,55.10°N. Na Figura

15 é possivel observar o resultado do p6s-processamento deste teste.

Figura 15 - P6s-processamento do terceiro teste com forga de icamento menor.

Desloc. y [m] Carreg. y [N] Tensao vy [Pa]
le?

1000 1200000
0.04
1000000
800 0.03
800000
0.02 600000
600
0.01 400000
400 200000
0.00
200
—0.01 —200000
—400000
0 —0.02

Fonte: Autoria prépria (2020).

h

L

=Y

Y]

%]

o

=

o

Na Figura 15 fica clara a distincéo das diferentes distribuicdes de tensao para as trés
partes diferentes da coluna com diferentes areas. Essa distincdo se deve aos

diferentes valores de area na sec¢éo transversal para as diferentes secoes.

4.4 Tempo de processamento

37

Para dados de entrada contendo um grande numero de elementos a resposta no

7z

programa nao € imediata porque o tempo de execucdo do cddigo comeca a se

mostrar significante.

Na Figura 16 é possivel observar uma comparacdo entre o numero de elementos

contido no arquivo de entrada e os tempos de execucdo separados no seguinte

formato: (tempo de execucdo do processamento, tempo de execucdo do pos-

processamento).

Figura 16 - Comparacéo entre o tempo de execucao dos programas € a variacdo do nimero de

4000
3500
3000
2500
2000
1500
1000
900
800
700
600
500
400
300
200
100
90
80

70
60

Numero de elementos

c8838

10

elementos

Estudo do tempo de execucao dos programas

(65
(49.8, 0.27)

(0.78, 0.24)
(0.41, 0.24)
(0.26, 0.24)
(0.09, 0.23)
(0.18, 0.25)
(0.08, 0.24)
(0.09, 0.24)
(0.05, 0.23)
(0.08, 0.35)
(0.09, 0.23)
(0.05, 0.25)

mm Processamento
BN Pds-processamento

91, 0.28)

T
0 10 20 30 40 30 60

Tempo de processamento [s]
Fonte: Autoria prépria (2020).

38

E possivel observar que, apesar de algumas excecdes, o tempo do pOs-
processamento se manteve constante na faixa de 0,23 a 0,29 segundos, com média
de 0,266 segundos. Enquanto isso o tempo de processamento vai aumentando de
forma nao linear, chegando a mais de um minuto para simulagcées com 4000

elementos.

Outro fato a se notar € o tempo de pdOs-processamento para dez elementos (0,38s)
maior que o tempo de pdés-processamento para quatro mil elementos (0,28s).
Acredita-se que tais tempos sdo tdo pequenos que fatores aleatérios de
processamento do computador (como o numero de algarismos flutuantes que
retornam das fungbes de processamento) influenciam este parametro, produzindo

resultados inconsistentes quando se analisa sem levar em conta tais pontos.

39

5 CONCLUSAO

Foi possivel obter os resultados desejados, com os graficos do pds-processamento
do célculo de tensdes pelo MEF sendo representados por mapas de cores de forma
a facilitar a visualizacdo dos dados numéricos obtidos.

No computador utilizado para realizar este trabalho (Intel i3, 4GB RAM e Windows
7), foi possivel testar exemplos com até +4200 elementos, antes de erros de
memoria ocorrerem. Isso acontece pois, para um numero muito grande de
elementos, a tarefa de armazenar os valores no momento da solugdo do sistema
linear demanda uma grande quantidade de memaria. Seria possivel contornar esse
problema com o uso de bibliotecas externas de algebra linear com foco nessa

otimizacdo da solucao de sistemas lineares com grandes matrizes.

5.1 Contribui¢cfes do trabalho

Com este trabalho, esperou-se mostrar as ferramentas necessarias para realizar a
producéo de cddigos simples que possam fornecer maneiras para visualizar dados
obtidos de diversas formas. A utilizacdo de colunas verticais da industria do petréleo

€ um exemplo de aplicacdo dessas ferramentas.

5.2 Trabalhos futuros

Este trabalho realizou a andlise do pés-processamento de exemplos estaticos,

porém, com algumas mudancas seria possivel realizar analises dinamicas.

Seria necessario definir um conjunto de forcas e realizar iteracbes no
processamento para se obter uma imagem de pds-processamento para um

momento diferente, com uma forca diferente.

Com a biblioteca Matplotlib utilizada, é possivel armazenar cada uma das figuras do
pos-processamento em uma imagem com extensao .png e produzir um arquivo com
extensao .gif com todas essas imagens. A biblioteca externa imageio, por exemplo,

possui recursos para realizar esta fungéo.

40

REFERENCIAS

ABREU, F.; CATABRIGA, L. Problemas de interacéo fluido-estrutura via método
dos elementos finitos utilizando a Biblioteca FEniICS. 2017.

ARCHER, G.C. Objected-Oriented Finite Element Analysis. 1996.
BORGES, L. E. Python para desenvolvedores. 2010.

BRUN, A.; AERTS, G.; JERK@, M. How to achieve 50% reduction in offshore
drilling costs. 2015.

CLOUGH, R. W.; WILSON, E. L. Stress Analysis of a Gravity Dam by the Finite
Element Method. 1962.

CUKIERMAN, H., TEIXEIRA, C. A. N., PRIKLADNICKI, R. Um Olhar Sociotécnico
sobre a Engenharia de Software. 2007.

GANDER, M. J.; WANNER, G. From euler, ritz, and galerkin to modern
computing. 2012

HUNTER, J. D. Matplotlib: A 2D Graphics Environment . 2007.

HUNTER, J. D.; DALE, D.; FIRING, E.; DROETTBOM, M. Matplotlib Release 3.3.2.
2020.

LOGG, A.; MARDAL, K.; WELLS, G. Automated solutions of differential
equations by the Finite Element Method. 2011.

LYONS, W. C.; PLISGA, G. J. Standard Handbook of Petroleum & Natural Gas
Engineering. 2005.

MEEK, J. A brief history of the beginning of the finite element method.
International journal for numerical methods in engineering. 1996.

PENNA, S. Pés-processador para Modelos Bidimensionais néo-lineares do
Método dos Elementos Finitos. 2007.

STEFANUTO, G., FILHO, S., DE LUCCA, J. E., ALVES, A. M. O impacto do
Software Livre e de Cédigo Aberto (SL/CA) nas Condicdes de Apropriabilidade
na Industria de Software Brasileira. 2005.

VAISBERG, O.; VINCKE, O.; PERRIN, O.; SARDA, J.P.; FAY, J.B. Fatigue of
Drillstring: State of the Art. 2002.

41

ZHENG, J.; QIU, H.; YANG, J.; BUTT, S. Fatigue life prediction of Drill-String
subjected to random loadings. 2014.

42

APENDICE A - FUNCAO PRINCIPAL DO POS-PROCESSAMENTO

Neste anexo é apresentado o cddigo da principal funcdo do programa de pos-
processamento, que realiza o tratamento dos dados e a elaboragéo dos graficos.

import matplotlib.pyplot as plt
from processamento import main
import time

def Principal():
Iniciar o tempo
tempo = time.time()

Relizar o processamento
desloc, carreg, area, ycoord = main(arq = 'nomedoarquivo.txt')

Calcular o tempo do processamento
t0 = time.time() - tempo

Formatar o vetor de area para obter a area dos nds
area.append(area[-1])

Tratar o vetor de carregamento
carreg = tira_x(carreg)
carreg.reverse()

carreg = tratamento(carreg)

#Calcular a tensao

tensao_y = []

for i in range (len(carreg)):
tensao_y.append([carreg[i]/area[i],carreg[i]/area[i]])

tensao_y.reverse()

Tratamento de dados
desloc_x, desloc y = []1,]]
carreg y = []
eixo y = []
eixo x = [0,1]
for item in desloc:
if abs(item[@]) < le-6:
desloc_x.append([0,0])
else:
desloc_x.append([item[@],item[@]])
if abs(item[1]) < le-6:
desloc_y.append([0,0])
else:
desloc_y.append([item[1],item[1]])
for i in range (len(carreg)):
if abs(carreg[i]) < le-6:

43

carreg_y.append([0,0])
else:
carreg_y.append([carreg[i],carreg[i]])
carreg_y.reverse()

eixo_y.append(ycoord[@])

for i in range(len(ycoord)-1):
eixo_y.append((ycoord[i]+ycoord[i+1])/2)

eixo_y.append(ycoord[-1])

Definigao da area de plotagem

fig, (ax@, axl, ax2) = plt.subplots(ncols=3, sharey = True, share
x = True)

ax0.title.set_text('Desloc. y [m]")

ax0.title.set_position((0.75,1.035))

axl.title.set_text('Carreg. y [N]')

axl.title.set _position((0.75,1.035))

ax2.title.set_text('Tensdo y [Pa]')

ax2.title.set_position((0.75,1.035))

Plot do deslocamento

im = ax@.pcolormesh(eixo_x,eixo_y,desloc_y,vmin = achamin(desloc_
y),vmax = achamax(desloc_y))

ax0.set_position([0.12,0.11,0.1,0.75])

ax0.xaxis.set_visible(False)

fig.colorbar(im, ax = ax@, cax = fig.add_axes([90.25,0.11,0.02,0.7
51))

Plot do carregamento

im = axl.pcolormesh(eixo_x,eixo_y,carreg_y,vmin = achamin(carreg_
y),vmax = achamax(carreg_y))

axl.set position([©.42,0.11,0.1,0.75])

axl.xaxis.set_visible(False)

fig.colorbar(im, ax = axl, cax = fig.add_axes([©.555,0.11,0.02,0.
751))

Plot da tensao

im = ax2.pcolormesh(eixo_x,eixo_y,tensao_y,vmin = achamin(tensao_
y),vmax = achamax(tensao_y))

ax2.set position([0.72,0.11,0.1,0.75])

ax2.xaxis.set_visible(False)

fig.colorbar(im, ax = ax1l, cax = fig.add axes([0.85,0.11,0.02,0.7
51))

Tempo final
tl = time.time()-tempo - to

Exibir o grafico
plt.show()
return tl1, tO

Universidade de Sao Paulo

Engenharia de Petréleo — Escola Politécnica

NUmero: 9882387USP Data: 16/11/2020

Pos-processamento de cédigo de elementos finitos na analis de
colunas de perfuracao

Hugo Veridiano

Orientador: Prof. Ronaldo Carrion

Resumo

Com o avanco da tecnologia na area de Engenharia de Petrdleo, novos métodos vao surgindo para ajudar
na realizacdo das rotinas executadas. Softwares computacionais sao grande parte desse avango, pois
auxiliam os profissionais tanto em atividades simples do cotidiano quanto em projetos que demandam
malis tempo e atencdo. No entanto, boa parte desses softwares sdo pagos e possuem pouca abertura para
que o usuario faca adaptacGes. Pensando nisso, este trabalho tem como objetivo produzir um cédigo
computacional na linguagem Python que realize o pos-processamento automatizado e otimizado do
calculo de tens6es e deslocamentos obtidos pelo método dos elementos finitos em colunas verticais,
fornecendo gréaficos que auxiliem na compreensdo dos resultados, utilizando um codigo autoral.

Abstract

With the advancement of technology in the area of Petroleum Engineering, new methods are emerging
to give help in carrying out the routines performed. Computational softwares are a big part of this
advance, as it helps professionals both in simple daily activities and in projects that demand more time
and attention. However, most of those softwares are paid for and have small openings for the user to
make adaptations. With this in mind, this work aims to produce a computational code in Python that
performs the automated and optimized post-processing of stress and displacement calculations of
vertical columns, obtained by the Finite element method, providing graphics that assist in the
understanding of the results, using a original code.

1. Introducéo

Com o surgimento dos computadores e dos softwares computacionais, alguns problemas que antes
demandavam muito tempo e esfor¢o humano para serem calculados, foram ressignificados. Os softwares
computacionais fazem parte de umaa revolucdo tecnoldgica que auxilia profissionais em diversas
atividades.

Boa parte dos softwares comerciais possui um codigo fechado, de modo que o usuario ndo tenha
acesso a implementacdo do mesmao. Isso acaba por gerar dificuldades na compreensdo do funcionamento
do programa e de como ele realiza seus célculos. No entanto, existem softwares e plataformas de
programacao de “cddigo aberto”, ou seja, que sdo manipulaveis, de forma que o usuario possa alterar o
programa para incluir as funcdes que deseja.

Premissas basicas de liberdade de expressdo, acesso a informacdo e coletividade do conhecimento,
que deve ser disponibilizado de forma democratica, sdo principios do cddigo aberto (STEFANUTO et
al., 2005).

Uma das principais linguagens de programacdo de cddigo aberto é o Python. Uma linguagem de
grande potencial e muito usada academicamente pela facil leitura e compreensdo da sintaxe, além de
oferecer suporte para bibliotecas externas que podem ser utilizadas para simplificar o cdédigo do usuério.

Nome do Aluno-Titulo do Trabalho (ano) 2

Entre essas bibliotecas que podem ser implementadas, existem vérias que poderiam auxiliar neste
trabalho para simplificar o cddigo do programa a ser desenvolvido, entre elas destacam-se Fipy, FEniCS
e Sfepy, todas escritas em Python.

Em muitos programas ndo-comerciais desenvolvidos para o célculo de equacgdes diferenciais,
principalmente o de resolucdo pelo método dos elementos finitos, um dos grandes entraves é a
representacdo dos dados apds serem processados.

Os programas geralmente “retornam” os dados de forma numérica, dificultando a compreensdo e a
visualizacdo da resolucdo do problema. Assim, utilizar programas que realizem o “pds-processamento”
destes célculos é importante para que haja compreensdo visual dos célculos realizados.

O pobs-processamento é a etapa em que é realizado o tratamento dos dados obtidos de forma a
representar as grandezas envolvidas no problema com clareza e objetividade (PENNA, 2007),
auxiliando na compreensao dos resultados obtidos e na interpretacdo dos mesmos.

Um exemplo de pds-processamento é o da Figura 1 abaixo, realizado por um programa que utiliza a
biblioteca FENICS.

Fluido Velocidade

Figura 1 - Exemplo de representacéo utilizando a biblioteca FEniCS (ABREU; CATABRIGA, 2017).

Assim, pretende-se realizar calculos por meio de um programa na linguagem Python a fim de
computar as tensdes distribuidas em colunas verticais de petroleo, realizando os célculos pelo método de
elementos finitos além de proporcionar a visualizacdo desses calculos obtidos por meio de graficos que
auxiliem a compreenséo do resultado.

Entende-se que o calculo das tensdes em colunas verticais é essencial para um projeto de perfuracéo,
tendo em vista que as condigdes em que a utilizagdo do equipamento ocorre podem ser perigosas para as
pessoas que trabalham no projeto. Geralmente esses equipamentos sdo testados em laboratorio em
condicdes desejadas de carregamento (VAISBERG et al, 2002).

2. Metodologia

Para realizar o processamento dos dados a partir de um input, foi necessario desenvolver um
programa que realizasse o calculo do método dos elementos finitos. O programa desenvolvido pelo
orientador originalmente em MATLAB foi traduzido para a linguagem Python para ser integrado com o
programa a ser desenvolvido para realizar o pds-processamento.

2.1. Processamento
O programa que realizava o processamento era dividido em diversas funcgdes, que n tradugdo para o

Python foram compiladas como diferentes fungcbes em um mesmo programa. Nos topicos abaixo sdo
abordadas as func¢des do programa de processamento e o formato dos dados de entrada.

2.1.1. Dados de entrada

Nome do Aluno-Titulo do Trabalho (ano) 3

Os dados de entrada sdo fornecidos em um arquivo de texto com extensdo .txt que serd lido pelo
programa.

2.1.2. Leitura dos dados

Esta fungdo realiza a leitura do arquivo de entrada e retorna os valores contidos nele: NUmero de
elementos, nimero de nés, coordenadas do n6 em X e y, condigdes de contorno do né em X e vy,
carregamento do né em x e y, conectividade dos elementos e propriedades dos elementos (mdédulo de
Young e érea).

2.1.3. Arranjos
Esta funcdo calcula os arranjos com e sem as condic¢Ges de contorno a partir dos vetores e escalares

obtidos nos dados de entrada. Os arranjos realizam a definicdo da posicdo dos elementos e nds na matriz
de rigidez.

2.1.4. Rigidez

As funges abaixo calculam as matrizes de rigidez utilizadas no programa.
2.1.4.1. Rigidez elementar

A partir de informacbes do comprimento e coordenadas do elemento, € obtido um angulo 6, que
fornece os pardmetros seno e cosseno para o calculo da matriz de rigidez do elemento, de formato 4x4.

2.1.4.2. Rigidez elementar

Realiza iteracGes entre os elementos utilizando-se da funcdo de Rigidez elementar para retornar a
matriz de rigidez de cada elemento e assim compor a matriz de rigidez global.

2.1.5. Carregamento

Esta funcéo realiza o calculo do vetor de carregamento para os elementos do conjunto. S&o realizados
calculos em iteracdes dos graus de liberdade de cada um dos nos, a fim de se obter um vetor final com o
carregamento no conjunto.

2.1.6. Carregamento

Durante a execucdo do codigo, é necessario resolver sistemas lineares. Ha diversas formas de se
resolver um sistema linear. Como o método de resolucdo do sistema linear ndo é do escopo deste
trabalho, foi utilizada uma biblioteca externa para realizar esta tarefa. O método linalg.solve() da
biblioteca NumPy realiza a resolucdo do sistema linear utilizando a decomposi¢do LU, conhecido
método na algebra linear

2.1.7. Vetores finais

Por fim, com base nos dados calculados, a ultima funcdo realiza o célculo dos vetores de
deslocamento e forcas em cada um dos n6s do conjunto. A funcdo retorna dois vetores: um para 0s
deslocamentos e um para os carregamentos. Ainda € realizado outro célculo para se obter as tensGes,
dividindo o carregamento pela area do elemento correspondente.

2.2. POs-processamento

O pos-processamento dos dados é realizado em um programa separado, entdo o primeiro passo do
programa ¢ “importar” a fung¢do principal do programa de processamento para que este realize os
calculos que fornecem os dados a serem pds-processados.

Nome do Aluno-Titulo do Trabalho (ano) 4

2.2.1. Tratamento dos dados

Séo realizados filtros para o tratamento dos dados, anulando valores com médulo menor que 1E-10
(para reduzir ruidos indesejados nos gréaficos) e realizando a inversdo dos vetores para que a
visualizagdo corresponda a realidade e seja mais bem interpretada.

Os valores unidimensionais sdo bi-dimensionalizados de modo a possibilitar a utilizacdo da funcédo
pcolormeshda biblioteca Matplotlib, para fornecer os graficos. Assim, lista se tornam matrizes de duas
colunas com valores iguais.

Os valores de deslocamento, carregamento e tensdo para o eixo X foram desconsiderados para a
analise da coluna de perfuracdo unidimensional.

2.2.2. Setup dos gréaficos

Para a representacdo dos dados foi utilizada a fungdo pcolormesh (matplotlib.pyplot.pcolormesh) pois
é a principal funcdo dentro da biblioteca Matplotlib para se produzir “mapas de calor”, tipo de grafico
que sera utilizado neste trabalho. A funcdo colorbar (matplotlib.pyplot.colorbar) foi utilizado para fazer
a legenda posicionada a esquerda de cada uma das grandezas representadas.

3. Resultados
3.1. Teste com 10 elementos

Para o primeiro exemplo testado, foi elaborado um arquivo que simulasse um objeto de 1000 metros
de altura com uma forca positiva de 10*N no topo e dois carregamentos negativos de 5.10°N distribuidos
pelo objeto. O material considerado foi aco (Mddulo de Young (E) = 210.10° N/m?) e a area da sec&o
transversal considerada foi de 1,838.102 m? (tubo de 6% in de didmetro externo e 5,901 in de didmetro
interno) (LYONS e PLISGA, 2005). Uma representacdo dos dados pode ser visualizada na Figura 2.

10000N

-5000N

-5000N

TTTTTT
Figura 2 - Exemplo de distribuicéo de for¢as no objeto

O primeiro pos-processamento dos resultados deste teste pode ser observado na Figura 3, onde 0s trés
gréaficos representam os vetores de deslocamento, carregamento (forca axial) e tenséo obtidos para o
eixo Yy, com suas respectivas legendas de cores ao lado esquerdo de cada grandeza, de forma a auxiliar a
interpretacéo.

Nome do Aluno-Titulo do Trabalho (ano)

Desloc. y [

1000
800
600
400
200

0

0.0012

0.0010

0.0008

0.0006

0.0004

0.0002

0.0000

Carreg. y [N]

10000
8000
6000
4000
2000
0

Tensao y [Pa]

500000
400000
300000
200000
100000
0

Figura 3 - P6s-processamento dos dados do primeiro teste com dez elementos.

3.2. Teste com 100 elementos

No segundo teste foi realizada uma analise com 100 elementos em condigdes similares a primeira. A
diferenca consta na disposicdo das forcas: Ao invés de focos pontuais de forcas aplicadas, serdo
distribuidas forcas negativas em todos os elementos (além da for¢a positiva no topo) de modo a simular
a agdo da “forca peso” agindo sobre o objeto. As informacdes sobre as propriedades do objeto estdo

dispostas na Tabela 1.

Tabela 1- Propriedades do Segundo teste

Propriedade Medida
Tamanho da secéo (L) 1000 m
Maodulo de Young (E) 210.10° Pa
Densidade (p) 7860 kg/m3
Diametro externo (OD) 6% in
Diametro interno (ID) 5.901 in
Forca de icamento (F) 1.10°N
Forca peso nos nos (P) -141729 N

O pos-processamento do segundo teste € representado pela Figura 4.

Nome do Aluno-Titulo do Trabalho (ano)

Desloc. y [m]

0.00

1000
800 0.06
600 0.04
400 0.02
200 _

0

Carreg. y [N] Tensao y [Pa]
1e7

[=]

1000000
800000
600000
400000
200000
—~200000 -1
—400000 -2

L

S

w

[

[

[=]

Figura 4 - Pés-processamento dos dados do segundo teste com cem elementos.

3.3. Teste com 1000 elementos

Para o teste com 1000 elementos, optou-se por realizar uma simulagdo mais préxima a realidade, com
diferentes dimensdes de didmetros internos e externos para diferentes tamanhos. As propriedades sdo
dispostas na Tabela 2.

Tabela 1- Propriedades do Terceiro teste

Propriedade Drillpipe HW Dirillpipe Drillcollar
Tamanho da secéo (L) 800 m 100 m 100 m
Maodulo de Young (E) 210.10° Pa 210.10° Pa 210.10° Pa
Densidade (p) 7860 kg/m?3 7860 kg/m3 7860 kg/m3
Diametro externo (OD) 6% in 4% in 5.00in
Diametro interno (ID) 5.90in 2.251in 2.25in
Forca de icamento (F) 1,55.10°N - -

Forca peso nos nés (P) -1417,3 N -2373,5N -3115,9 N

O pos-processamento do terceiro teste é representado pela Figura 5.

Desloc. y [m]

1000
800
600
400
200

0

0.06

0.04

0.02

0.00

Carreg. y [N] Tensao y [Pa]

le7

o

1000000
800000
600000
400000
200000
—200000
—400000

w

-

w

3%

=

o

-1

-2

Figura 5 - P6s-processamento dos dados do terceiro teste com mil elementos.

Nome do Aluno-Titulo do Trabalho (ano) 7

4. Conclusao

Foi possivel obter os resultados desejados, com os graficos do pds-processamento do calculo de
tensbes pelo MEF sendo representados por mapas de cores de forma a facilitar a visualizagcdo dos dados
numericos obtidos.

4.1. Contribuices do trabalho

Com este trabalho, esperou-se mostrar as ferramentas necessarias para realizar a producdo de c6digos
simples que possam fornecer maneiras para visualizar dados obtidos de diversas formas. A utilizagdo de
colunas verticais da industria do petroleo € um exemplo de aplicacdo dessas ferramentas.

4.2. Trabalhos futuros

Este trabalho realizou a analise do p6s-processamento de exemplos estaticos, porém, com algumas
mudancas seria possivel realizar analises dinamicas.
Seria necessario definir um conjunto de forgas e realizar iteragcdes no processamento para se obter uma
imagem de pds-processamento para um momento diferente, com uma forca diferente.

5. Concluséao

ABREU, F.; CATABRIGA, L. Problemas de interacdo fluido-estrutura via método dos elementos finitos utilizando a
Biblioteca FENICS. 2017.

LYONS, W. C.; PLISGA, G. J. Standard Handbook of Petroleum & Natural Gas Engineering. 2005.
PENNA, S. Pds-processador para Modelos Bidimensionais ndo-lineares do Método dos Elementos Finitos. 2007.

STEFANUTO, G., FILHO, S., DE LUCCA, J. E., ALVES, A. M. O impacto do Software Livre e de Codigo Aberto
(SL/CA) nas Condic¢bes de Apropriabilidade na Industria de Software Brasileira. 2005.

VAISBERG, O.; VINCKE, O.; PERRIN, O.; SARDA, J.P.; FAY, J.B. Fatigue of Drillstring: State of the Art. 2002.

	1 Introdução
	1.1 Objetivo
	1.2 Justificativa
	1.3 Organização do trabalho

	2 Revisão Bibliográfica
	2.1 Método dos elementos finitos
	2.2 Implementação computacional do Método dos elementos finitos
	2.2.1 Abordagem histórica da implementação computacional do MEF

	2.3 Python
	2.4 Pós-processamento em Python
	2.4.1 Matplotlib

	2.5 Tensões em colunas verticais

	3 METODOLOGIA
	3.1 Processamento
	3.1.1 Dados de entrada
	3.1.2 Leitura dos dados
	3.1.3 Arranjos
	3.1.4 Rigidez
	3.1.5 Carregamento
	3.1.6 Sistema linear
	3.1.7 Vetores finais

	3.2 Pós-processamento
	3.2.1 Tratamento dos dados
	3.2.2 Setup dos gráficos

	4 RESULTADOS
	4.1 Teste com 10 elementos
	4.2 Teste com 100 elementos
	4.3 Teste com 1000 elementos
	4.4 Tempo de processamento

	5 Conclusão
	5.1 Contribuições do trabalho
	5.2 Trabalhos futuros

	Referências
	Apêndice A - Função principal do pós-processamento
	1 Introdução (1)
	1.1 Objetivo
	1.2 Justificativa
	1.3 Organização do trabalho

	2 Revisão Bibliográfica (1)
	2.1 Método dos elementos finitos
	2.2 Implementação computacional do Método dos elementos finitos
	2.2.1 Abordagem histórica da implementação computacional do MEF

	2.3 Python
	2.4 Pós-processamento em Python
	2.4.1 Matplotlib

	2.5 Tensões em colunas verticais

	3 METODOLOGIA (1)
	3.1 Processamento
	3.1.1 Dados de entrada
	3.1.2 Leitura dos dados
	3.1.3 Arranjos
	3.1.4 Rigidez
	3.1.4.1 Rigidez elementar
	3.1.4.2 Rigidez global

	3.1.5 Carregamento
	3.1.6 Sistema linear
	3.1.7 Vetores finais

	3.2 Pós-processamento
	3.2.1 Tratamento dos dados
	3.2.2 Setup dos gráficos

	4 RESULTADOS (1)
	4.1 Teste com 10 elementos
	4.2 Teste com 100 elementos
	4.3 Teste com 1000 elementos
	4.4 Tempo de processamento

	5 Conclusão (1)
	5.1 Contribuições do trabalho
	5.2 Trabalhos futuros

	Referências (1)
	Apêndice A - Função principal do pós-processamento

	TCC2020-15_HugoVeridiano_AS.pdf.pdf
	Universidade de São Paulo
	Engenharia de Petróleo – Escola Politécnica
	Número: 9882387USP Data: 16/11/2020
	Pós-processamento de código de elementos finitos na anális de colunas de perfuração
	Hugo Veridiano
	Resumo
	Abstract
	1. Introdução
	2. Metodologia
	2.1. Processamento
	2.2. Pós-processamento
	3. Resultados
	3.1. Teste com 10 elementos
	3.2. Teste com 100 elementos
	3.3. Teste com 1000 elementos
	4. Conclusão
	4.1. Contribuições do trabalho
	4.2. Trabalhos futuros
	5. Conclusão

