
 

 

 

  

HUGO VERIDIANO GONÇALVES 

 

PÓS-PROCESSAMENTO DE CÓDIGO DE ELEMENTOS FINITOS NA 

ANÁLISE DE COLUNAS DE PERFURAÇÃO 

SANTOS 

2020 

Trabalho de Conclusão de Curso 
apresentado à Escola Politécnica da 
Universidade de São Paulo para obtenção 
do diploma de Engenharia de Petróleo. 

 



 

 

SANTOS 

2020 

HUGO VERIDIANO GONÇALVES 

 

PÓS-PROCESSAMENTO DE CÓDIGO DE ELEMENTOS FINITOS NA 
ANÁLISE DE COLUNAS DE PERFURAÇÃO 

 

Trabalho de Conclusão de Curso 
apresentado à Escola Politécnica da 
Universidade de São Paulo para obtenção 
do diploma de Engenharia de Petróleo. 

Área de concentração: Perfuração 

Orientador: Ronaldo Carrion 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

FICHA CATALOGRÁFICA 

Gonçalves, Hugo Veridiano 
 
PÓS-PROCESSAMENTO DE CÓDIGO DE ELEMENTOS FINITOS 
NA ANÁLIS DE COLUNAS DE PERFURAÇÃO / H.V. Gonçalves – 
São Paulo, 2020. 
43 p. 
 
      Trabalho de Formatura – Escola Politécnica da Universidade 
de São Paulo. Departamento de Engenharia de Minas e de 
Petróleo. 
 
      1.Python 2.Método dos Elementos Finitos 3.Pós-
processamento. 
I.Universidade de São Paulo. Escola Politécnica. Departamento 
de Engenharia de Minas e de Petróleo II.t. 

 
 

 
 

 
 
 

 
 



 

 

AGRADECIMENTOS 

Gostaria de agradecer a Deus pelas oportunidades e pelos sutis toques no meu 

caminho. 

Agradecer ao meu pai, Ttel, que me vigia e me guarda de um lugar melhor. 

À minha mãe Fernanda, por fazer o possível e impossível para garantir minha 

educação e por criar filhos sadios emocionalmente. 

À minha vó Regina, por sempre incentivar meus estudos e discutir conceitos comigo. 

À minha tia Renata e meu irmão Pedro, que deram suporte para que eu conseguisse 

sempre atender às minhas aulas. 

À minha namorada Lara, por esses anos de incrível companheirismo e suporte. 

Obrigado por ter passado os domingos estudando ao meu lado e por compreender e 

me ajudar com as minhas angústias. 

Ao meu orientador Prof. Ronaldo Carrion pela grande parceria neste ano e por ter 

agarrado este projeto comigo. 

Aos meus colegas do curso de Engenharia de Petróleo da Escola Politécnica da 

USP, muito obrigado por todas as experiências e aprendizados que me 

proporcionaram. 

A todos os docentes e funcionários, muito obrigado. 

Ao futuro Hugo, que possa encontrar boas lembranças da época da faculdade ao ler 

este trabalho novamente. Nós conseguimos. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Aqueles que são loucos o suficiente 

 para achar que podem mudar o mundo,  

são os que realmente o fazem.” 

(Steve Jobs) 



 

 

RESUMO 

Com o avanço da tecnologia na área de Engenharia de Petróleo, novos métodos vão 

surgindo para ajudar na realização das rotinas executadas. Softwares 

computacionais são grande parte desse avanço, pois auxiliam os profissionais tanto 

em atividades simples do cotidiano quanto em projetos que demandam mais tempo 

e atenção. No entanto, boa parte desses softwares são pagos e possuem pouca 

abertura para que o usuário faça adaptações. Pensando nisso, este trabalho tem 

como objetivo produzir um código computacional na linguagem Python que realize o 

pós-processamento automatizado e otimizado do cálculo de tensões e 

deslocamentos obtidos pelo método dos elementos finitos em colunas verticais, 

fornecendo gráficos que auxiliem na compreensão dos resultados, utilizando um 

código autoral. Foram obtidos gráficos para diferentes testes realizados que 

puderam representar os resultados de forma clara e facilitar a compreensão ao 

realizar a leitura. 

Palavras-chave: Python, Método dos elementos finitos, Pós-processamento. 

 



 

 

ABSTRACT 

With the advancement of technology in the area of Petroleum Engineering, new 

methods are emerging to give help in carrying out the routines performed. 

Computational softwares are a big part of this advance, as it helps professionals both 

in simple daily activities and in projects that demand more time and attention. 

However, most of those softwares are paid for and have small openings for the user 

to make adaptations. With this in mind, this work aims to produce a computational 

code in Python that performs the automated and optimized post-processing of stress 

and displacement calculations of vertical columns, obtained by the Finite element 

method, providing graphics that assist in the understanding of the results, using a 

original code. Graphs for different performed tests were obtained, representing the 

result clearly and making it easier to understand. 

Keywords: Python, Finite element method, Post-processing. 



 

 

LISTA DE FIGURAS 

Figura 1 - Exemplo de representação utilizando a biblioteca FEniCS. ...................... 12 

Figura 2 - Representação de uma geometria complexa dividida em uma malha de 

elementos finitos. ................................................................................................. 15 

Figura 3 - Exemplo de código escrito em Python ...................................................... 18 

Figura 4 - Exemplo de utilização da biblioteca Matplotlib .......................................... 19 

Figura 5 - Fluxograma do desenvolvimento dos códigos. ......................................... 21 

Figura 6 - Exemplo de arquivo de texto utilizado como input .................................... 23 

Figura 7 - Matriz de rigidez elementar ....................................................................... 24 

Figura 8 - Exemplo de estruturação da matriz de rigidez global ................................ 26 

Figura 9 - Transformação de dados unidimensionais para dados bi-dimensionais ... 28 

Figura 10 - Exemplo de distribuição de forças no objeto ........................................... 30 

Figura 11 - Exemplificação dos dados de entrada do primeiro teste. ........................ 31 

Figura 12 - Pós-processamento dos dados do primeiro teste com dez elementos. .. 32 

Figura 13 - Pós-processamento dos dados do segundo teste com cem elementos. 33 

Figura 14 - Pós-processamento dos dados do terceiro teste com mil elementos. .... 35 

Figura 15 - Pós-processamento do terceiro teste com força de içamento menor. .... 36 

Figura 16 - Comparação entre o tempo de execução dos programas e a variação do 

número de elementos .......................................................................................... 37 

 



 

 

LISTA DE TABELAS 

Tabela 1 - Propriedades do segundo teste................................................................ 33 

Tabela 2 - Propriedades do terceiro teste. ................................................................ 34 

 



 

 

SUMÁRIO 

1 INTRODUÇÃO ................................................................................................... 10 

1.1 Objetivo ....................................................................................................... 12 

1.2 Justificativa................................................................................................. 13 

1.3 Organização do trabalho ........................................................................... 14 

2 REVISÃO BIBLIOGRÁFICA .............................................................................. 15 

2.1 Método dos elementos finitos ................................................................... 15 

2.2 Implementação computacional do Método dos elementos finitos ........ 16 

2.2.1 Abordagem histórica da implementação computacional do MEF .......... 17 

2.3 Python ......................................................................................................... 17 

2.4 Pós-processamento em Python ................................................................ 18 

2.4.1 Matplotlib ............................................................................................... 19 

2.5 Tensões em colunas verticais................................................................... 20 

3 METODOLOGIA ................................................................................................. 21 

3.1 Processamento ........................................................................................... 22 

3.1.1 Dados de entrada .................................................................................. 22 

3.1.2 Leitura dos dados .................................................................................. 23 

3.1.3 Arranjos ................................................................................................. 24 

3.1.4 Rigidez ................................................................................................... 24 

3.1.5 Carregamento ........................................................................................ 26 

3.1.6 Sistema linear ........................................................................................ 27 

3.1.7 Vetores finais ......................................................................................... 27 

3.2 Pós-processamento ................................................................................... 27 

3.2.1 Tratamento dos dados ........................................................................... 27 

3.2.2 Setup dos gráficos ................................................................................. 29 



 

 

4 RESULTADOS ................................................................................................... 30 

4.1 Teste com 10 elementos ............................................................................ 30 

4.2 Teste com 100 elementos .......................................................................... 32 

4.3 Teste com 1000 elementos ........................................................................ 34 

4.4 Tempo de processamento ......................................................................... 37 

5 CONCLUSÃO ..................................................................................................... 39 

5.1 Contribuições do trabalho ......................................................................... 39 

5.2 Trabalhos futuros ....................................................................................... 39 

REFERÊNCIAS ......................................................................................................... 40 

APÊNDICE A - FUNÇÃO PRINCIPAL DO PÓS-PROCESSAMENTO..................... 42 



10 

 

1 INTRODUÇÃO 

Com o avanço da tecnologia na área de Engenharia de Petróleo, novos métodos vão 

surgindo para ajudar na realização das rotinas executadas por profissionais da área. 

Com o surgimento dos computadores e dos softwares computacionais, alguns 

problemas, que antes demandavam muito tempo e esforço humano para serem 

calculados, foram sendo ressignificados. 

Ano após ano surgem renovações na parte tecnológica da indústria, que altera sua 

dinâmica operacional para se alinhar às novas tecnologias, que acabam por trazer 

um resultado positivo financeiramente. Os softwares computacionais são grande 

parte dessa revolução tecnológica, pois auxiliam os profissionais tanto em atividades 

simples do cotidiano quanto em complexos projetos demorados. 

No entanto, boa parte destes softwares tem licenças pagas e são desenvolvidos por 

grandes empresas para serem vendidos para outras grandes empresas com claros 

objetivos comerciais. Alguns destes softwares possuem licenças estudantis para 

universidades, mas a dinâmica de utilização dos programas acaba fazendo com que 

os estudantes se familiarizem com o uso dos mesmos para se adequarem a utilizá-

los no mercado de trabalho, sem que entendam como os programas realizam suas 

funções. 

Boa parte dos softwares comerciais possui um código fechado, de modo que o 

usuário não tenha acesso à implementação do mesmo. Isso acaba por gerar 

dificuldades na compreensão do funcionamento do programa e de como ele realiza 

seus cálculos, além de dificultar que o usuário personalize o programa e adicione 

extensões que sejam úteis para ele mesmo, vedando novamente o aprendizado do 

aluno. 

No entanto, existem softwares e plataformas de programação de “código aberto”, ou 

seja, que são manipuláveis pelo usuário, de forma que o usuário possa alterar o 

programa ou utilizar dessas linguagens para escrever o código de um programa 

próprio, o qual realizará as funções e os cálculos que deseja. 



11 

 

Premissas básicas de liberdade de expressão, acesso à informação e coletividade 

do conhecimento, que deve ser disponibilizado de forma democrática, são princípios 

do código aberto (STEFANUTO et al., 2005). 

Uma das principais linguagens de programação de código aberto é o Python. Uma 

linguagem de grande potencial e muito usada academicamente pela fácil leitura e 

compreensão da sintaxe, além de oferecer suporte para bibliotecas externas que 

podem ser utilizadas para simplificar o código do usuário. 

Entre essas bibliotecas que podem ser implementadas, existem várias que poderiam 

auxiliar neste trabalho para simplificar o código do programa a ser desenvolvido, 

entre elas destacam-se Fipy, FEniCS e Sfepy, todas escritas em Python. 

No entanto, o uso dessas bibliotecas com foco exclusivo nos tópicos alvo a serem 

abordados, desvia da filosofia proposta deste trabalho, que é desenvolver um código 

autoral. 

Em muitos programas não-comerciais desenvolvidos para o cálculo de equações 

diferenciais, principalmente o de resolução pelo método dos elementos finitos, um 

dos grandes entraves é a representação dos dados após serem processados. 

Os programas geralmente “retornam” os dados de forma numérica, dificultando a 

compreensão e a visualização da resolução do problema. Assim, utilizar programas 

que realizem o “pós-processamento” destes cálculos é importante para que haja 

compreensão visual dos cálculos realizados. 

O pós-processamento é a etapa em que é realizado o tratamento dos dados obtidos 

de forma a representar as grandezas envolvidas no problema com clareza e 

objetividade (PENNA, 2007), auxiliando na compreensão dos resultados obtidos e 

na interpretação dos mesmos. 

Com o pós-processamento, os dados numéricos se tornam representações 

bidimensionais ou até tridimensionais dos resultados, de maneira a facilitar a 

compreensão. Como exemplo dessas representações, pode-se mencionar os 

gráficos de calor (heatmaps), que utilizam a cor dos elementos como uma grandeza.

  



12 

 

Um exemplo de pós-processamento é o da Figura 1 abaixo, realizado por um 

programa que utiliza a biblioteca FEniCS. 

Figura 1 - Exemplo de representação utilizando a biblioteca FEniCS. 

 

Fonte: (ABREU; CATABRIGA, 2017). 

Entende-se que o cálculo das tensões em colunas verticais é essencial para um 

projeto de perfuração, tendo em vista que as condições em que a utilização do 

equipamento ocorre podem ser perigosas para as pessoas que trabalham no 

projeto. Geralmente esses equipamentos são testados em laboratório em condições 

desejadas de carregamento (VAISBERG et al, 2002). 

Assim, pretende-se realizar cálculos por meio de um programa na linguagem Python 

a fim de computar as tensões distribuídas em colunas verticais de petróleo, 

realizando os cálculos pelo método de elementos finitos além de proporcionar a 

visualização desses cálculos obtidos por meio de gráficos que auxiliem a 

compreensão do resultado. 

1.1 Objetivo 

O trabalho tem como objetivo desenvolver um programa na linguagem Python para 

realizar cálculos de tensões em colunas verticais pelo método dos elementos finitos 

e realizar o pós-processamento dos resultados destes cálculos gerando gráficos que 

possam facilitar a compreensão da solução desenvolvida. 

Os objetivos específicos desse trabalho são: 



13 

 

a) Apresentar a metodologia do método dos elementos finitos como forma de 

solução dos problemas propostos. 

b) Produzir rotinas em Python para a produção do pós-processamento. 

c) Apresentar os pós-processamentos obtidos em formas de gráficos claros 

produzidos pelo programa. 

1.2 Justificativa 

Atualmente na Engenharia a utilização de softwares para a realização das mais 

diversas tarefas é necessária. A simplificação de cálculos complexos permite mais 

eficiência em projetos e rapidez na entrega de informação. No entanto, boa parte 

dos softwares se apresenta com pouca “disposição” para que o usuário faça 

alterações de acordo com seu interesse. A elaboração de sistemas de software 

parece envolta em uma "ortodoxia técnica", e, assim, vista apenas como um 

processo “técnico”, a ser realizado por especialistas (CUKIERMAN; TEIXEIRA; 

PRIKLADNICKI, 2007). 

Essa perspectiva desestimula que graduandos se proponham a elaborar seus 

próprios programas para a execução de diferentes tarefas, e assim, acabam se 

adaptando a utilização de softwares de código fechado. 

A justificativa pessoal para a escolha do tema envolve a vontade de criar um 

programa “do zero”. Isso permite verificar todo o embasamento teórico presente nos 

cálculos que o programa realiza e assim ter completo compreendimento do 

funcionamento do programa. 

Em rotinas de programação, o conhecimento pleno do funcionamento de um 

programa é essencial para poder reparar possíveis erros que são muito comuns nas 

fases iniciais da concepção do mesmo. Ao utilizar programas adicionais para 

desenvolver um software novo, a tarefa de rastrear os erros que aparecem no 

desenvolvimento do programa fica mais difícil, tornando o processo mais complicado 

e menos original. 

Utilizando-se de códigos abertos, pode-se verificar a possibilidade do entendimento 

por trás da elaboração de um software de cálculo de tensões pelo método dos 



14 

 

elementos finitos, utilizando recursos gráficos para o pós-processamento dos 

resultados obtidos. 

Programas de código aberto que calculam por meio do método dos elementos finitos 

e produzem gráficos para auxiliar na compreensão dos resultados não são novidade. 

Como mencionado anteriormente, existem bibliotecas em Python com esse 

propósito. Portanto, a ideia desse trabalho é escrever um programa autoral que não 

deixe de utilizar bibliotecas externas mas que tenha as partes de cálculo do método 

dos elementos finitos e pós-processamento feitas de forma autoral. 

1.3 Organização do trabalho 

No capítulo 1 são expostos conceitos gerais do trabalho e introdução dos temas 

discutidos no mesmo. 

O capítulo 2 conta com uma revisão bibliográfica sobre o método dos elementos 

finitos, implementações computacionais do mesmo, abordagens históricas do 

método e também sobre a interação do método com a linguagem Python. 

O capítulo 3 aborda a metodologia utilizada neste trabalho, analisando tanto a 

implementação do código do método dos elementos finitos quanto o pós-

processamento do mesmo. 

O capítulo 4 aborda os resultados dos testes realizados. 

Por fim, o capítulo 5 analisa o que foi realisado no trabalho e conclui com os 

pareceres finais. 



15 

 

2 REVISÃO BIBLIOGRÁFICA 

2.1 Método dos elementos finitos 

O Método dos Elementos Finitos (MEF) é um método numérico de discretização 

para obter valores aproximados de soluções de equações diferenciais. O método 

realiza a subdivisão do domínio em pequenas partes com geometrias conhecidas, 

denominadas elementos finitos (MEEK, 1996). 

O procedimento consiste em realizar a solução de forma aproximada para as 

equações de campo em um subdomínio, para em seguida por um processo de 

“assemblagem” obter a solução em todo o domínio, preservando-se a continuidade 

ou o equilíbrio dos nós entre os elementos (MEEK, 1996). 

O conceito da divisão do domínio em partes menores possui alguns benefícios, 

como a representação de geometrias complexas em modelos mais simples 

compostos por geometrias básicas. Com isso, a identificação de efeitos localizados 

se torna possível. 

As subdivisões modeladas em geometrias básicas são unidas por “nós”, que são 

pontos em comum nas arestas das subdivisões. Um exemplo da divisão de um 

modelo em uma malha de subdivisões é apresentado Figura 2. 

Figura 2 - Representação de uma geometria complexa dividida em uma malha de elementos finitos. 

 

Fonte: (ABREU; CATABRIGA, 2017). 



16 

 

Não há como pontuar um momento na história como nascimento do método dos 

elementos finitos. Acredita-se que o método tenha surgido como uma solução para 

problemas no campo de análises estruturais nas áreas de Engenharia Civil e 

Engenharia Mecânica. Há diversas personalidades a serem nomeadas como 

pioneiras no estudo do MEF. 

Richard Courant, na década de 1940, foi um dos primeiros a desenvolver a idéia de 

aproximar o domínio por subdomínios triangulares finitos para resolver um problema 

de equações diferenciais de segundo grau (GANDER; WANNER, 2012). 

Walter Ritz foi um físico-matemático desenvolvedor do Método de Ritz. O princípio 

do método consiste na definição de um espaço finito de funções para achar uma 

aproximação para a solução do problema por meio de combinações lineares das 

funções determinadas. Ritz utilizou seu método na mecânica quântica, na área de 

linhas espectrais de átomos (GANDER; WANNER, 2012). 

Boris Galerkin (nascido em 1871), matemático, engenheiro e ativista político 

soviético desenvolveu um método (Método de Galerkin ou, após as contribuições de 

Ivan Bubnov (1872-1919), Método de Bubnov-Galerkin) para otimizar a tarefa de se 

encontrar um determinado número limitado de equações algébricas para aproximar 

uma equação diferencial. O método atual derivado se chama Método de resíduos 

ponderados (GANDER; WANNER, 2012). 

O método de Galerkin é um bom exemplo de um método fácil para codificar, sendo 

assim um dos mais utilizados em programas que fazem uso do método dos 

elementos finitos.  

2.2 Implementação computacional do Método dos elementos finitos 

Como demonstrado no item 2.1, as bases do cálculo realizado no método dos 

elementos finitos já eram conhecidas há tempos, no entanto o número grande de 

cálculos a serem realizados impedia a utilização do mesmo. 

A precisão do método está atrelada à quantidade de subdivisões presentes no 

modelo, quanto mais e menores subdivisões, melhor a precisão. No entanto com o 



17 

 

aumento de subdivisões, o número de cálculos a serem realizados cresce 

(GANDER; WANNER, 2012). 

Esse problema pode ser contornado ao “delegar” ao computador a tarefa de realizar 

esses cálculos, apresentando apenas as condições que devem ser calculadas. 

2.2.1 Abordagem histórica da implementação computacional do MEF 

Edward L. Wilson é considerado um dos precursores de análises computacionais 

utilizando o método dos elementos finitos. A autoria do primeiro programa 

computacional utilizando o método dos elementos finitos é atribuída a ele, em uma 

tese de mestrado orientada por Ray Clough, publicada em 1962 (CLOUGH; 

WILSON, 1962). 

Em 1996, Graham Archer desenvolveu um programa que realiza cálculos em 

elementos finitos utilizando a linguagem C++, com foco no desenvolvimento do 

programa com programação orientada a objetos. O programa foi feito de forma a ser 

replicado de uma maneira fácil e que aceitasse a adição de novas funções 

(ARCHER, 1996). 

Atualmente o software FEniCS é amplamente utilizado para análises utilizando o 

método dos elementos finitos. O projeto começou a ser desenvolvido em 2003 como 

uma pesquisa colaborativa entre a Universidade de Chicago e a Universidade de 

Chalmers, na Suécia. O software é gratuito e aberto e oferece bibliotecas em 

diferentes linguagens, inclusive Python, para que usuários utilizem dos recursos da 

melhor maneira possível (LOGG; MARDAL; WELLS, 2011). 

2.3 Python 

Python é uma linguagem de programação de alto nível de código aberto 

caracterizada pela fácil legibilidade dos códigos, o que faz com que a linguagem seja 

muito comum no ambiente acadêmico. 

Foi desenvolvida por Guido van Rossum em 1990 no Instituto Nacional de Pesquisa 

para Matemática e Ciência da Computação da Holanda (CWI) (BORGES, 2010). 



18 

 

Python sempre teve um ideal de gratuidade, código aberto, disponibilidade e 

acessibilidade (é possível programar em Python em diversos sistemas operacionais, 

assim como celulares e tablets, entre outros sistemas) e com um foco principal na 

clareza da sintaxe. 

A interface em Python, como na Figura 3, pode ser usada para realizar os cálculos e 

traduzir complexos modelos científicos em códigos de elementos finitos. 

Figura 3 - Exemplo de código escrito em Python 

 

Fonte: Autoria própria (2020) 

A linguagem de programação em Python pode ser muito eficiente em análises 

numéricas pela facilidade na sintaxe e boa relação com tratamentos de dados para 

obter uma interpretação dos resultados. 

2.4 Pós-processamento em Python 

Diversas bibliotecas que podem ser importadas para ajudar no pós-processamento 

dos dados obtidos pelo método dos elementos finitos já foram desenvolvidas em 

Python. Entre as que realizam o cálculo do método e fazem o pós-processamento, 

podemos citar FiPy, SfePy e principalmente FEniCS, que tem suporte não só em 

Python mas em outras linguagens. 



19 

 

2.4.1 Matplotlib 

Matplotlib é uma biblioteca de software desenvolvida em Python para a elaboração 

de gráficos e recursos visuais para visualização de dados, oferecendo diversos 

modelos para que os dados sejam representados. Foi desenvolvida por John Hunter 

em 2003 e continuada por Michael Droetboom e Thomas Caswell após o falecimento 

do autor original (HUNTER, 2007). 

A interface de programação orientada a objetos oferece gráficos similares aos 

gráficos de MATLAB, mas com o intuito de ser um código open source, é 

programado em Python e não possui nenhum tipo de licença ou restrição. 

Na Figura 4 é possível ver um exemplo de gráfico que pode ser desenvolvido 

utilizando a biblioteca Matplotlib. 

Figura 4 - Exemplo de utilização da biblioteca Matplotlib 

 

Fonte: HUNTER et al, 2020 



20 

 

2.5 Tensões em colunas verticais 

Um dos problemas mais comuns em operações de perfuração utilizando colunas 

verticais é a falha por fadiga, que faz com que o custo da perfuração aumente de 

forma significativa (ZHENG et al., 2014). 

Embora haja diversos estudos na área e o assunto seja discutido frequentemente, a 

frequência em que esses eventos ocorrem continua alta. De acordo com Brun, Aerts 

e Jerkø (2015), os custos com perfuração e completação representam de 40% a 

50% do total do CAPEX em operações médias. Em maiores operações estes custos 

chegam a ser de 65%. 

O estudo das tensões em colunas verticais pode ser um grande aliado na redução 

dos custos de operações de perfuração, visto que parte das falhas por fadiga ocorre 

devido às concentrações de tensões (VAISBERG et al., 2002). 

 

 



21 

 

3 METODOLOGIA 

Para realizar o processamento dos dados a partir de um certo input, foi necessário 

desenvolver um programa que realizasse o cálculo do método dos elementos finitos. 

O orientador Prof. Ronaldo Carrion (2020)1 forneceu um programa de autoria própria 

desenvolvido na linguagem MATLAB para realizar os cálculos. 

Este programa foi traduzido para a linguagem Python para ser integrado com o 

programa desenvolvido para realizar o pós-processamento dos dados e fornecer os 

recursos visuais. 

Na Figura 5 pode-se visualizar o fluxograma do desenvolvimento dos códigos. 

Figura 5 - Fluxograma do desenvolvimento dos códigos. 

 

Fonte: Autoria própria (2020). 

                                            
 

1 Código fornecido pelo orientador do trabalho, Prof. Dr. Ronaldo Carrion, para adaptação e tradução 
para linguagem Python 



22 

 

3.1 Processamento 

O código original em MATLAB que realizava a parte de processamento do 

programa, era dividido em diversas funções (como observado no fluxograma da 

Figura 5) que eram compiladas em um programa principal. 

Na tradução para Python optou-se por escrever todas as funções em um só 

programa (no mesmo arquivo), a fim de centralizar e simplificar o processo de 

produção do código. 

Naturalmente, é comum dividir programas em códigos diferentes e compilá-los em 

um só código. Isso auxilia no desenvolvimento do programa pelo fato de que quando 

são realizados testes para verificar o funcionamento mesmo, um programa 

fragmentado é mais fácil para identificar e solucionar erros no código. A decisão de 

centralizar o programa foi uma questão de preferência pessoal. 

Nos tópicos abaixo são abordadas as etapas de funcionamento do programa 

descritas na Figura 5. 

3.1.1 Dados de entrada 

Os dados de entrada são fornecidos em um arquivo de texto com extensão .txt que 

será lido pelo programa. O formato dos dados contidos nesse arquivo é descrito na 

Figura 6 abaixo: 



23 

 

Figura 6 - Exemplo de arquivo de texto utilizado como input 

 

Fonte: Autoria própria (2020). 

3.1.2 Leitura dos dados 

A função que realiza a leitura dos dados está no programa principal. Esta função lê 

os dados de entrada e armazena os valores em variáveis que serão utilizadas nas 

próximas funções. 

As variáveis que o programa lê e retorna são: Número de elementos, número de 

nós, coordenadas do nó em x e y, condições de contorno do nó em x e y, 

carregamento do nó em x e y, conectividade dos elementos e propriedades dos 

elementos (módulo de Young e área). 



24 

 

Com exceção do número de elementos e do número de nós que são escalares 

inteiros, todos os outros outputs da função são matrizes (listas de listas). 

3.1.3 Arranjos 

Esta função calcula os arranjos com e sem as condições de contorno a partir dos 

vetores e escalares obtidos nos dados de entrada. 

Os arranjos realizam a definição da posição dos elementos e nós na matriz de 

rigidez que irá compor o sistema linear a ser resolvido para se obter os vetores de 

solução. 

3.1.4 Rigidez 

As funções abaixo calculam as matrizes de rigidez utilizadas no programa. 

3.1.4.1 Rigidez elementar 

Função utilizada para calcular a matriz de rigidez de um elemento do objeto. Retorna 

uma matriz 4x4 que irá compor a matriz global de rigidez. 

A partir de informações do comprimento e coordenadas do elemento, é obtido um 

ângulo θ, que fornece os parâmetros seno e cosseno. A matriz retornada tem seu 

formato apresentada na Figura 7 abaixo: 

Figura 7 - Matriz de rigidez elementar 

 

Fonte: Autoria própria (2020). 

(α)(sen)(cos) (α)(-cos²)

(α)(sen²) (α)(-sen)(cos)

(α)(-sen)(cos) (α)(cos²)

(α)(-sen²) (α)(sen)(cos)

(α)(cos²)

(α)(sen)(cos)

(α)(-cos²)

(α)(-sen)(cos)

(α)(-sen)(cos)

(α)(-sen²)

(α)(sen)(cos)

(α)(sen²)



25 

 

Onde α representa a seguinte multiplicação: 

𝛼 =  
𝐸 ∗  𝐴

𝐿
 

Na equação acima, “E” representa o módulo de elasticidade do elemento, “A” 

representa a Área do elemento e “L” representa a comprimento cartesiano do 

elemento. 

3.1.4.2 Rigidez global 

Função utilizada para calcular a matriz de rigidez de todo o conjunto de elementos. 

Realiza iterações entre os elementos utilizando-se da função de Rigidez elementar 

para retornar a matriz de rigidez de cada elemento e assim compor a matriz de 

rigidez global. 

A posição das matrizes de cada um dos elementos na matriz global é definida pelos 

vetores obtidos na função de arranjos. 

Na Figura 8 abaixo é possível perceber como é estruturada a matriz de rigidez 

global: 



26 

 

Figura 8 - Exemplo de estruturação da matriz de rigidez global 

 

Fonte: Autoria própria (2020). 

Onde os quadrados coloridos representam as matrizes de rigidez elementar e αn 

representa a posição da matriz de rigidez elementar do elemento na matriz de 

rigidez global, definida pela função de arranjos. A sobreposição de matrizes 

representa os graus de liberdade compartilhados entre os elementos. 

3.1.5 Carregamento 

Esta função realiza o cálculo do vetor de carregamento para os elementos do 

conjunto. 

São realizados cálculos em iterações dos graus de liberdade de cada um dos nós, a 

fim de se obter um vetor final com o carregamento no conjunto. 

α0

α1

α2

α3

α4

α5

α6

α7

α8

α9



27 

 

3.1.6 Sistema linear 

Durante a execução do código, é necessário resolver alguns sistemas lineares. 

Há diversas formas de se resolver um sistema linear. Como o método de resolução 

do sistema linear não é do escopo deste trabalho, foi utilizada uma biblioteca externa 

para realizar esta tarefa. 

O método linalg.solve() da biblioteca NumPy realiza a resolução do sistema linear 

utilizando a decomposição LU, conhecido método na álgebra linear. 

3.1.7 Vetores finais 

Por fim, com base nos dados calculados, a última função realiza o cálculo dos 

vetores de deslocamento e forças em cada um dos nós do conjunto. 

A função retorna dois vetores: um para os deslocamentos e um para os 

carregamentos. Ainda é realizado outro cálculo para se obter as tensões. Por se 

tratar de um elemento de barra, basta dividir o carregamento pela área do elemento 

correspondente. 

3.2 Pós-processamento 

O pós-processamento dos dados é realizado em um programa separado, então 

naturalmente, pela dinâmica do Python, o primeiro passo do programa é “importar” a 

função principal do programa de processamento para que este realize os cálculos 

que fornecem os dados a serem pós-processados. 

3.2.1 Tratamento dos dados 

Com os dados em posse, um tratamento dos mesmos é realizado. Um primeiro filtro 

é aplicado em valores com módulo abaixo de 1E-10. Para estes valores é atribuído 

um valor de 0 para reduzir os ruídos indesejados nos gráficos a serem fornecidos. 



28 

 

Outra alteração realizada é a inversão dos vetores, visto que originalmente, os 

últimos dados dos vetores representam os valores “mais acima” na prática e os 

primeiros os “mais abaixo”. Essa inversão é crucial para que a visualização seja 

mais bem interpretada, pois assim o gráfico possui a orientação vertical correta (a 

parte de cima da coluna de perfuração fica na parte de cima do gráfico e vice-versa). 

Para fornecer os gráficos foi utilizada a função pcolormesh da biblioteca Matplotlib.  

Essa função requer que os argumentos a serem representados estejam definidos 

em listas bi-dimensionais (listas de listas). Como os dados que serão representados 

são unidimensionais, é necessário transformá-los em bi-dimensionais para que seja 

possível utilizá-los na função pcolormesh. 

A transformação é simples e ocorre “duplicando” os valores originais do vetor 

unidimensional em duas colunas com o vetor, tendo assim uma matriz Nx2 (onde N 

é o tamanho do vetor) em que as duas colunas são iguais, como descrito na Figura 

9. 

Figura 9 - Transformação de dados unidimensionais para dados bi-dimensionais 

 

 Fonte: Autoria própria (2020). 



29 

 

Além disso, foram desconsiderados os resultados para os deslocamentos e 

carregamentos no eixo X, visto que a análise que faremos é unidimensional e estes 

resultados seriam nulos. 

O fato dos resultados do eixo X serem nulos foi utilizado para validar os resultados 

do programa, verificando que os testes realizados forneciam resultados coerentes. 

3.2.2 Setup dos gráficos 

Como a intenção do programa é gerar os gráficos para que fiquem posicionados 

lado a lado, visando uma melhor visualização e comparação entre as grandezas 

representadas, foi utilizada a função subplots (matplotlib.pyplot.subplots) para 

realizar esta tarefa. 

Como o objeto a representar é unidimensional, foi necessário que a variável de 

visualização do eixo x fosse definida como não-visível. Isso foi realizado com a 

intenção de não confundir o leitor com um dado a mais a ser intepretado na leitura 

do gráfico. 

Para a representação dos dados foi utilizada a função pcolormesh 

(matplotlib.pyplot.pcolormesh) pois é a principal função dentro da biblioteca 

Matplotlib para se produzir ”mapas de calor”, tipo de gráfico que será utilizado neste 

trabalho. 

A função colorbar (matplotlib.pyplot.colorbar) foi utilizada para fazer a legenda 

posicionada à esquerda de cada uma das grandezas representadas. 

  



30 

 

4 RESULTADOS 

Com o uso dos programas elaborados, foram realizados testes para verificar a 

performance do pós-processamento e os outputs fornecidos pelo mesmo. 

4.1 Teste com 10 elementos 

Para o primeiro exemplo testado, foi elaborado um arquivo que simulasse um objeto 

de 1000 metros de altura com uma força positiva de 104N no topo e dois 

carregamentos negativos de 5.103N distribuídos pelo objeto. O material considerado 

foi aço (Módulo de Young (E) = 210.109 N/m²) e a área da seção transversal 

considerada foi de 1,838.10-2 m² (tubo de 6⅝ in de diâmetro externo e 5,901 in de 

diâmetro interno) (LYONS e PLISGA, 2005). Uma representação dos dados pode 

ser visualizada na Figura 10. 

Figura 10 - Exemplo de distribuição de forças no objeto 

  

Fonte: Autoria própria (2020). 



31 

 

Para este teste, a disposição do arquivo de entrada é representada pela Figura 11, 

em um formato de arquivo análogo ao representado pela Figura 6 no capítulo 3. As 

reticências indicam intervalos onde os dados apresentados possuem um formato 

semelhante (seguem o mesmo padrão) que as linhas vizinhas. Assim sendo, o 

arquivo original não é exatamente igual ao representado na figura. 

Figura 11 - Exemplificação dos dados de entrada do primeiro teste. 

  

Fonte: Autoria própria (2020). 

O pós-processamento dos resultados deste teste pode ser observado na Figura 12, 

onde os três gráficos representam os vetores de deslocamento, carregamento (força 

axial) e tensão obtidos para o eixo y, com suas respectivas legendas de cores ao 

lado esquerdo de cada grandeza, de forma a auxiliar a interpretação. 

A execução por completo do programa foi realizada em 0,26 segundos, onde 0,002 

segundos foram empregados no processamento e o resto no pós-processamento. 



32 

 

Figura 12 - Pós-processamento dos dados do primeiro teste com dez elementos. 

 

Fonte: Autoria própria (2020). 

4.2 Teste com 100 elementos 

No segundo teste foi realizada uma análise com 100 elementos em condições 

similares à primeira. A diferença consta na disposição das forças: Ao invés de focos 

pontuais de forças aplicadas, serão distribuídas forças negativas em todos os 

elementos (além da força positiva no topo) de modo a simular a ação da “força peso” 

agindo sobre o objeto. 

O arquivo de dados de entrada foi modelado de modo que a força positiva no topo 

seja inferior à soma das forças negativas dispostas ao longo do objeto, simulando o 

que ocorre em uma coluna de perfuração, onde, na parte inferior do objeto, há 

compressão. As informações sobre as propriedades do objeto simulado estão 

dispostas na Tabela 1. 



33 

 

Tabela 1 - Propriedades do segundo teste 

Propriedade Medida 

Tamanho da seção (L) 1000 m 

Módulo de Young (E) 210.109 Pa 

Densidade (ρ) 7860 kg/m³ 

Diâmetro externo (OD) 6⅝ in 

Diâmetro interno (ID) 5.901 in 

Força de içamento (F) 1.106 N 

Força peso nos nós (P) -14172,9 N 

 

Assim, o pós-processamento dos resultados é observado na Figura 13, onde são 

apresentados os gráficos de deslocamento, carregamento e tensão no eixo y. O 

tempo de execução para este exemplo foi de 0,3 segundos, onde 0,05 segundos 

foram empregados no processamento e 0,25 segundos no pós-processamento. 

Figura 13 - Pós-processamento dos dados do segundo teste com cem elementos. 

 Fonte: Autoria própria (2020). 

Na Figura 13 é possível observar valores negativos de deslocamento, carregamento 

e tensão, devido ao estado de compressão na região entre y = 200 e y = 400 metros. 



34 

 

4.3 Teste com 1000 elementos 

Para o teste com 1000 elementos, optou-se por realizar uma simulação mais 

próxima à realidade, com diferentes dimensões  de diâmetros internos e externos 

para diferentes tamanhos de seções, assim, simulando as partes que compõem uma 

coluna vertical de perfuração, o Drillpipe, o Heavyweight drillpipe e o Drillcollar 

(LYONS e PLISGA, 2005). 

As dimensões e propriedades utilizadas em cada uma das seções definidas, assim 

como suas respectivas extensões verticais, são descritas na Tabela 2. 

Assim como no segundo teste, foi distribuída uma força peso para cada um dos nós 

(exceto o último, onde se aplica uma força positiva de içamento). 

Tabela 2 - Propriedades do terceiro teste. 

Propriedade Drillpipe HW Drillpipe Drillcollar 

Tamanho da seção (L) 800 m 100 m 100 m 

Módulo de Young (E) 210.109 Pa 210.109 Pa 210.109 Pa 

Densidade (ρ) 7860 kg/m³ 7860 kg/m³ 7860 kg/m³ 

Diâmetro externo (OD) 6⅝ in 4½ in 5.00 in 

Diâmetro interno (ID) 5.90 in 2.25 in 2.25 in 

Força de içamento (F) 1,55.106 N - - 

Força peso nos nós (P) -1417,3 N -2373,5 N -3115,9 N 

Fonte: Adaptado de (LYONS e PLISGA, 2005). 

Pode se observar que a área da seção transversal dos nós do HW Drillpipe e do 

Drillcollar são maiores, pois apresentam uma diferença (OD – ID) maior que a 

respectiva diferença para o Drillpipe. Assim sendo, temos que: 

𝐴𝑑𝑐 >  𝐴𝐻𝑊𝑑𝑝  >  𝐴𝑑𝑝 

Onde Adc representa a Área da seção transversal do Drillcollar, AHWdp representa a 

área da seção transversal do HW Drillpipe e Adp a área da seção do Drillpipe. 

Como, nesta simulação, todas as partes da coluna são feitas com o mesmo material 

(aço), as três partes possuem densidades iguais. Assim sendo, a força peso respeita 

a mesma proporção das áreas descritas, assim como observado na Tabela 2. 



35 

 

Assim como nos testes anteriores, a coluna encontra-se engastada no nó y = 0, 

prevenindo o movimento do mesmo independente das forças aplicadas. 

O resultado do pós-processamento do teste realizado com 1000 elementos pode ser 

observado na Figura 14. O tempo total de execução do programa foi de 4.24 

segundos, onde 3,98 segundos foram empregados no cálculo do processamento e 

0,26 segundos no cálculo do pós-processamento. 

Figura 14 - Pós-processamento dos dados do terceiro teste com mil elementos. 

 
Fonte: Autoria própria (2020). 

É possível observar que a distribuição de tensão apresenta uma diferente 

linearidade entre y = 0m ~ y = 200m e entre y = 201m e y = 1000m. Isso se deve às 

diferentes áreas da seção transversal das diferentes partes da coluna. 

Pela análise do gráfico é possível observar que a região onde a Tensão é nula 

encontra-se entre y=0m e y = 100m, o que simula o que ocorre na prática, onde a 

variação do sinal da tensão ocorre geralmente no drillcollar. 

É possível observar essa diferente distribuição de tensões nas diferentes partes da 

coluna ao se aplicar uma força de içamento menor, o que levaria a região de 



36 

 

compressão “mais para cima”, e assim obteríamos uma região maior com 

deslocamentos negativos. 

Assim, foi realizado um teste em condições iguais ao do terceiro teste, porém com 

uma força de içamento de 1,2.106N, ante uma força original de 1,55.106N. Na Figura 

15 é possível observar o resultado do pós-processamento deste teste. 

Figura 15 - Pós-processamento do terceiro teste com força de içamento menor. 

 Fonte: Autoria própria (2020). 

Na Figura 15 fica clara a distinção das diferentes distribuições de tensão para as três 

partes diferentes da coluna com diferentes áreas. Essa distinção se deve aos 

diferentes valores de área na seção transversal para as diferentes seções. 

 



37 

 

4.4 Tempo de processamento 

Para dados de entrada contendo um grande número de elementos a resposta no 

programa não é imediata porque o tempo de execução do código começa a se 

mostrar significante. 

Na Figura 16 é possível observar uma comparação entre o número de elementos 

contido no arquivo de entrada e os tempos de execução separados no seguinte 

formato: (tempo de execução do processamento, tempo de execução do pós-

processamento). 

Figura 16 - Comparação entre o tempo de execução dos programas e a variação do número de 
elementos 

Fonte: Autoria própria (2020). 



38 

 

É possível observar que, apesar de algumas exceções, o tempo do pós-

processamento se manteve constante na faixa de 0,23 a 0,29 segundos, com média 

de 0,266 segundos. Enquanto isso o tempo de processamento vai aumentando de 

forma não linear, chegando a mais de um minuto para simulações com 4000 

elementos. 

Outro fato a se notar é o tempo de pós-processamento para dez elementos (0,38s) 

maior que o tempo de pós-processamento para quatro mil elementos (0,28s). 

Acredita-se que tais tempos são tão pequenos que fatores aleatórios de 

processamento do computador (como o número de algarismos flutuantes que 

retornam das funções de processamento) influenciam este parâmetro, produzindo 

resultados inconsistentes quando se analisa sem levar em conta tais pontos. 



39 

 

5 CONCLUSÃO 

Foi possível obter os resultados desejados, com os gráficos do pós-processamento 

do cálculo de tensões pelo MEF sendo representados por mapas de cores de forma 

a facilitar a visualização dos dados numéricos obtidos. 

No computador utilizado para realizar este trabalho (Intel i3, 4GB RAM e Windows 

7), foi possível testar exemplos com até ±4200 elementos, antes de erros de 

memória ocorrerem. Isso acontece pois, para um número muito grande de 

elementos, a tarefa de armazenar os valores no momento da solução do sistema 

linear demanda uma grande quantidade de memória. Seria possível contornar esse 

problema com o uso de bibliotecas externas de álgebra linear com foco nessa 

otimização da solução de sistemas lineares com grandes matrizes. 

5.1 Contribuições do trabalho 

Com este trabalho, esperou-se mostrar as ferramentas necessárias para realizar a 

produção de códigos simples que possam fornecer maneiras para visualizar dados 

obtidos de diversas formas. A utilização de colunas verticais da indústria do petróleo 

é um exemplo de aplicação dessas ferramentas. 

5.2 Trabalhos futuros 

Este trabalho realizou a análise do pós-processamento de exemplos estáticos, 

porém, com algumas mudanças seria possível realizar análises dinâmicas. 

Seria necessário definir um conjunto de forças e realizar iterações no 

processamento para se obter uma imagem de pós-processamento para um 

momento diferente, com uma força diferente. 

Com a biblioteca Matplotlib utilizada, é possível armazenar cada uma das figuras do 

pós-processamento em uma imagem com extensão .png e produzir um arquivo com 

extensão .gif com todas essas imagens. A biblioteca externa imageio, por exemplo, 

possui recursos para realizar esta função. 



40 

 

REFERÊNCIAS 

ABREU, F.; CATABRIGA, L. Problemas de interação fluido-estrutura via método 
dos elementos finitos utilizando a Biblioteca FEniCS. 2017. 

ARCHER, G.C. Objected-Oriented Finite Element Analysis. 1996. 

BORGES, L. E. Python para desenvolvedores. 2010. 

BRUN, A.; AERTS, G.; JERKØ, M. How to achieve 50% reduction in offshore 
drilling costs. 2015. 

CLOUGH, R. W.; WILSON, E. L. Stress Analysis of a Gravity Dam by the Finite 
Element Method. 1962. 

CUKIERMAN, H., TEIXEIRA, C. A. N., PRIKLADNICKI, R. Um Olhar Sociotécnico 
sobre a Engenharia de Software. 2007. 

GANDER, M. J.; WANNER, G. From euler, ritz, and galerkin to modern 
computing. 2012 

HUNTER, J. D. Matplotlib: A 2D Graphics Environment . 2007. 

HUNTER, J. D.; DALE, D.; FIRING, E.; DROETTBOM, M. Matplotlib Release 3.3.2. 

2020. 

LOGG, A.; MARDAL, K.; WELLS, G. Automated solutions of differential 
equations by the Finite Element Method. 2011.  

LYONS, W. C.; PLISGA, G. J. Standard Handbook of Petroleum & Natural Gas 
Engineering. 2005. 

MEEK, J. A brief history of the beginning of the finite element method. 
International journal for numerical methods in engineering. 1996.  

PENNA, S. Pós-processador para Modelos Bidimensionais não-lineares do 
Método dos Elementos Finitos. 2007. 

STEFANUTO, G., FILHO, S., DE LUCCA, J. E., ALVES, A. M. O impacto do 
Software Livre e de Código Aberto (SL/CA) nas Condições de Apropriabilidade 
na Indústria de Software Brasileira. 2005. 

VAISBERG, O.; VINCKÉ, O.; PERRIN, O.; SARDA, J.P.; FAŸ, J.B. Fatigue of 
Drillstring: State of the Art. 2002. 



41 

 

ZHENG, J.; QIU, H.; YANG, J.; BUTT, S. Fatigue life prediction of Drill-String 
subjected to random loadings. 2014. 



42 

 

APÊNDICE A -  FUNÇÃO PRINCIPAL DO PÓS-PROCESSAMENTO 

Neste anexo é apresentado o código da principal função do programa de pós-

processamento, que realiza o tratamento dos dados e a elaboração dos gráficos. 

 import matplotlib.pyplot as plt   

 from processamento import main   
 import time            

    

 def Principal():   
     # Iniciar o tempo   

     tempo = time.time()   
    

     # Relizar o processamento   
     desloc, carreg, area, ycoord = main(arq = 'nomedoarquivo.txt')   

    

     # Calcular o tempo do processamento   
     t0 = time.time() - tempo   

    
     # Formatar o vetor de área para obter a área dos nós   

     area.append(area[-1])   

    
     # Tratar o vetor de carregamento   

     carreg = tira_x(carreg)   
     carreg.reverse()   

     carreg = tratamento(carreg)   
    

     #Calcular a tensão   

     tensao_y = []   
     for i in range (len(carreg)):   

         tensao_y.append([carreg[i]/area[i],carreg[i]/area[i]])   
     tensao_y.reverse()   

    

     # Tratamento de dados   
     desloc_x, desloc_y = [],[]   

     carreg_y = []   
     eixo_y = []   

     eixo_x = [0,1]   
     for item in desloc:   

         if abs(item[0]) < 1e-6:   

             desloc_x.append([0,0])   
         else:   

             desloc_x.append([item[0],item[0]])   
         if abs(item[1]) < 1e-6:   

             desloc_y.append([0,0])   

         else:   
             desloc_y.append([item[1],item[1]])         

     for i in range (len(carreg)):   
         if abs(carreg[i]) < 1e-6:   



43 

 

             carreg_y.append([0,0])   

         else:   
             carreg_y.append([carreg[i],carreg[i]])   

     carreg_y.reverse()   
    

     eixo_y.append(ycoord[0])   
     for i in range(len(ycoord)-1):   

         eixo_y.append((ycoord[i]+ycoord[i+1])/2)   

     eixo_y.append(ycoord[-1])   
    

     # Definição da área de plotagem   
     fig, (ax0, ax1, ax2) = plt.subplots(ncols=3, sharey = True, share

x = True)   

     ax0.title.set_text('Desloc. y [m]')   
     ax0.title.set_position((0.75,1.035))   

     ax1.title.set_text('Carreg. y [N]')   
     ax1.title.set_position((0.75,1.035))   

     ax2.title.set_text('Tensão y [Pa]')   
     ax2.title.set_position((0.75,1.035))   

    

     # Plot do deslocamento   
     im = ax0.pcolormesh(eixo_x,eixo_y,desloc_y,vmin = achamin(desloc_

y),vmax = achamax(desloc_y))   
     ax0.set_position([0.12,0.11,0.1,0.75])   

     ax0.xaxis.set_visible(False)   

     fig.colorbar(im, ax = ax0, cax = fig.add_axes([0.25,0.11,0.02,0.7
5]))   

    
     # Plot do carregamento   

     im = ax1.pcolormesh(eixo_x,eixo_y,carreg_y,vmin = achamin(carreg_
y),vmax = achamax(carreg_y))   

     ax1.set_position([0.42,0.11,0.1,0.75])   

     ax1.xaxis.set_visible(False)   
     fig.colorbar(im, ax = ax1, cax = fig.add_axes([0.555,0.11,0.02,0.

75]))   
    

     # Plot da tensão   

     im = ax2.pcolormesh(eixo_x,eixo_y,tensao_y,vmin = achamin(tensao_
y),vmax = achamax(tensao_y))   

     ax2.set_position([0.72,0.11,0.1,0.75])   
     ax2.xaxis.set_visible(False)   

     fig.colorbar(im, ax = ax1, cax = fig.add_axes([0.85,0.11,0.02,0.7
5]))   

    

     # Tempo final   
     t1 = time.time()-tempo - t0   

    
     # Exibir o gráfico   

     plt.show()   

     return t1, t0 



Universidade de São Paulo 

Engenharia de Petróleo – Escola Politécnica 

Número: 9882387USP   Data: 16/11/2020 

Pós-processamento de código de elementos finitos na anális de 
colunas de perfuração 

Hugo Veridiano 

Orientador: Prof. Ronaldo Carrion 

 

Resumo 

Com o avanço da tecnologia na área de Engenharia de Petróleo, novos métodos vão surgindo para ajudar 

na realização das rotinas executadas. Softwares computacionais são grande parte desse avanço, pois 

auxiliam os profissionais tanto em atividades simples do cotidiano quanto em projetos que demandam 

mais tempo e atenção. No entanto, boa parte desses softwares são pagos e possuem pouca abertura para 

que o usuário faça adaptações. Pensando nisso, este trabalho tem como objetivo produzir um código 

computacional na linguagem Python que realize o pós-processamento automatizado e otimizado do 

cálculo de tensões e deslocamentos obtidos pelo método dos elementos finitos em colunas verticais, 

fornecendo gráficos que auxiliem na compreensão dos resultados, utilizando um código autoral. 

Abstract 

With the advancement of technology in the area of Petroleum Engineering, new methods are emerging 

to give help in carrying out the routines performed. Computational softwares are a big part of this 

advance, as it helps professionals both in simple daily activities and in projects that demand more time 

and attention. However, most of those softwares are paid for and have small openings for the user to 

make adaptations. With this in mind, this work aims to produce a computational code in Python that 

performs the automated and optimized post-processing of stress and displacement calculations of 

vertical columns, obtained by the Finite element method, providing graphics that assist in the 

understanding of the results, using a original code. 

1. Introdução 

Com o surgimento dos computadores e dos softwares computacionais, alguns problemas que antes 

demandavam muito tempo e esforço humano para serem calculados, foram ressignificados. Os softwares 

computacionais fazem parte de umaa revolução tecnológica que auxilia profissionais em diversas 

atividades. 

Boa parte dos softwares comerciais possui um código fechado, de modo que o usuário não tenha 

acesso à implementação do mesmo. Isso acaba por gerar dificuldades na compreensão do funcionamento 

do programa e de como ele realiza seus cálculos. No entanto, existem softwares e plataformas de 

programação de “código aberto”, ou seja, que são manipuláveis, de forma que o usuário possa alterar o 

programa para incluir as funções que deseja. 

Premissas básicas de liberdade de expressão, acesso à informação e coletividade do conhecimento, 

que deve ser disponibilizado de forma democrática, são princípios do código aberto (STEFANUTO et 

al., 2005). 

Uma das principais linguagens de programação de código aberto é o Python. Uma linguagem de 

grande potencial e muito usada academicamente pela fácil leitura e compreensão da sintaxe, além de 

oferecer suporte para bibliotecas externas que podem ser utilizadas para simplificar o código do usuário. 



Nome do Aluno-Título do Trabalho (ano)  2 

Entre essas bibliotecas que podem ser implementadas, existem várias que poderiam auxiliar neste 

trabalho para simplificar o código do programa a ser desenvolvido, entre elas destacam-se Fipy, FEniCS 

e Sfepy, todas escritas em Python. 

Em muitos programas não-comerciais desenvolvidos para o cálculo de equações diferenciais, 

principalmente o de resolução pelo método dos elementos finitos, um dos grandes entraves é a 

representação dos dados após serem processados. 

Os programas geralmente “retornam” os dados de forma numérica, dificultando a compreensão e a 

visualização da resolução do problema. Assim, utilizar programas que realizem o “pós-processamento” 

destes cálculos é importante para que haja compreensão visual dos cálculos realizados. 

O pós-processamento é a etapa em que é realizado o tratamento dos dados obtidos de forma a 

representar as grandezas envolvidas no problema com clareza e objetividade (PENNA, 2007), 

auxiliando na compreensão dos resultados obtidos e na interpretação dos mesmos. 

Um exemplo de pós-processamento é o da Figura 1 abaixo, realizado por um programa que utiliza a 

biblioteca FEniCS. 

 
Figura 1 - Exemplo de representação utilizando a biblioteca FEniCS (ABREU; CATABRIGA, 2017). 

Assim, pretende-se realizar cálculos por meio de um programa na linguagem Python a fim de 

computar as tensões distribuídas em colunas verticais de petróleo, realizando os cálculos pelo método de 

elementos finitos além de proporcionar a visualização desses cálculos obtidos por meio de gráficos que 

auxiliem a compreensão do resultado. 

Entende-se que o cálculo das tensões em colunas verticais é essencial para um projeto de perfuração, 

tendo em vista que as condições em que a utilização do equipamento ocorre podem ser perigosas para as 

pessoas que trabalham no projeto. Geralmente esses equipamentos são testados em laboratório em 

condições desejadas de carregamento (VAISBERG et al, 2002). 

2. Metodologia 

Para realizar o processamento dos dados a partir de um input, foi necessário desenvolver um 

programa que realizasse o cálculo do método dos elementos finitos. O programa desenvolvido pelo 

orientador originalmente em MATLAB foi traduzido para a linguagem Python para ser integrado com o 

programa a ser desenvolvido para realizar o pós-processamento. 

2.1. Processamento 

O programa que realizava o processamento era dividido em diversas funções, que n tradução para o 

Python foram compiladas como diferentes funções em um mesmo programa. Nos tópicos abaixo são 

abordadas as funções do programa de processamento e o formato dos dados de entrada. 

2.1.1. Dados de entrada 



Nome do Aluno-Título do Trabalho (ano)  3 

Os dados de entrada são fornecidos em um arquivo de texto com extensão .txt que será lido pelo 

programa. 

2.1.2. Leitura dos dados 

Esta função realiza a leitura do arquivo de entrada e retorna os valores contidos nele: Número de 

elementos, número de nós, coordenadas do nó em x e y, condições de contorno do nó em x e y, 

carregamento do nó em x e y, conectividade dos elementos e propriedades dos elementos (módulo de 

Young e área). 

2.1.3. Arranjos 

Esta função calcula os arranjos com e sem as condições de contorno a partir dos vetores e escalares 

obtidos nos dados de entrada. Os arranjos realizam a definição da posição dos elementos e nós na matriz 

de rigidez. 

2.1.4. Rigidez 

As funções abaixo calculam as matrizes de rigidez utilizadas no programa. 

2.1.4.1. Rigidez elementar 

A partir de informações do comprimento e coordenadas do elemento, é obtido um ângulo θ, que 

fornece os parâmetros seno e cosseno para o cálculo da matriz de rigidez do elemento, de formato 4x4. 

2.1.4.2. Rigidez elementar 

Realiza iterações entre os elementos utilizando-se da função de Rigidez elementar para retornar a 

matriz de rigidez de cada elemento e assim compor a matriz de rigidez global. 

2.1.5. Carregamento 

Esta função realiza o cálculo do vetor de carregamento para os elementos do conjunto. São realizados 

cálculos em iterações dos graus de liberdade de cada um dos nós, a fim de se obter um vetor final com o 

carregamento no conjunto. 

2.1.6. Carregamento 

Durante a execução do código, é necessário resolver sistemas lineares. Há diversas formas de se 

resolver um sistema linear. Como o método de resolução do sistema linear não é do escopo deste 

trabalho, foi utilizada uma biblioteca externa para realizar esta tarefa. O método linalg.solve() da 

biblioteca NumPy realiza a resolução do sistema linear utilizando a decomposição LU, conhecido 

método na álgebra linear 

2.1.7. Vetores finais 

Por fim, com base nos dados calculados, a última função realiza o cálculo dos vetores de 

deslocamento e forças em cada um dos nós do conjunto. A função retorna dois vetores: um para os 

deslocamentos e um para os carregamentos. Ainda é realizado outro cálculo para se obter as tensões, 

dividindo o carregamento pela área do elemento correspondente. 

2.2. Pós-processamento 

O pós-processamento dos dados é realizado em um programa separado, então o primeiro passo do 

programa é “importar” a função principal do programa de processamento para que este realize os 

cálculos que fornecem os dados a serem pós-processados. 



Nome do Aluno-Título do Trabalho (ano)  4 

2.2.1. Tratamento dos dados 

São realizados filtros para o tratamento dos dados, anulando valores com módulo menor que 1E-10 

(para reduzir ruídos indesejados nos gráficos) e realizando a inversão dos vetores para que a 

visualização corresponda à realidade e seja mais bem interpretada. 

Os valores unidimensionais são bi-dimensionalizados de modo a possibilitar a utilização da função 

pcolormeshda biblioteca Matplotlib, para fornecer os gráficos. Assim, lista se tornam matrizes de duas 

colunas com valores iguais. 

Os valores de deslocamento, carregamento e tensão para o eixo X foram desconsiderados para a 

análise da coluna de perfuração unidimensional. 

2.2.2. Setup dos gráficos 

Para a representação dos dados foi utilizada a função pcolormesh (matplotlib.pyplot.pcolormesh) pois 

é a principal função dentro da biblioteca Matplotlib para se produzir ”mapas de calor”, tipo de gráfico 

que será utilizado neste trabalho. A função colorbar (matplotlib.pyplot.colorbar) foi utilizado para fazer 

a legenda posicionada à esquerda de cada uma das grandezas representadas. 

3. Resultados 

3.1. Teste com 10 elementos 

Para o primeiro exemplo testado, foi elaborado um arquivo que simulasse um objeto de 1000 metros 

de altura com uma força positiva de 104N no topo e dois carregamentos negativos de 5.103N distribuídos 

pelo objeto. O material considerado foi aço (Módulo de Young (E) = 210.109 N/m²) e a área da seção 

transversal considerada foi de 1,838.10-2 m² (tubo de 6⅝ in de diâmetro externo e 5,901 in de diâmetro 

interno) (LYONS e PLISGA, 2005). Uma representação dos dados pode ser visualizada na Figura 2. 

 
Figura 2 - Exemplo de distribuição de forças no objeto 

O primeiro pós-processamento dos resultados deste teste pode ser observado na Figura 3, onde os três 

gráficos representam os vetores de deslocamento, carregamento (força axial) e tensão obtidos para o 

eixo y, com suas respectivas legendas de cores ao lado esquerdo de cada grandeza, de forma a auxiliar a 

interpretação. 



Nome do Aluno-Título do Trabalho (ano)  5 

 
Figura 3 - Pós-processamento dos dados do primeiro teste com dez elementos. 

3.2. Teste com 100 elementos 

No segundo teste foi realizada uma análise com 100 elementos em condições similares à primeira. A 

diferença consta na disposição das forças: Ao invés de focos pontuais de forças aplicadas, serão 

distribuídas forças negativas em todos os elementos (além da força positiva no topo) de modo a simular 

a ação da “força peso” agindo sobre o objeto. As informações sobre as propriedades do objeto estão 

dispostas na Tabela 1. 

Tabela 1– Propriedades do Segundo teste 

Propriedade Medida 

Tamanho da seção (L) 1000 m 

Módulo de Young (E) 210.109 Pa 

Densidade (ρ) 7860 kg/m³ 

Diâmetro externo (OD) 6⅝ in 

Diâmetro interno (ID) 5.901 in 

Força de içamento (F) 1.106 N 

Força peso nos nós (P) -14172,9 N 

O pós-processamento do segundo teste é representado pela Figura 4. 
 



Nome do Aluno-Título do Trabalho (ano)  6 

 
Figura 4 - Pós-processamento dos dados do segundo teste com cem elementos. 

3.3. Teste com 1000 elementos 

Para o teste com 1000 elementos, optou-se por realizar uma simulação mais próxima à realidade, com 

diferentes dimensões  de diâmetros internos e externos para diferentes tamanhos. As propriedades são 

dispostas na Tabela 2. 

Tabela 1– Propriedades do Terceiro teste 

Propriedade Drillpipe HW Drillpipe Drillcollar 

Tamanho da seção (L) 800 m 100 m 100 m 

Módulo de Young (E) 210.109 Pa 210.109 Pa 210.109 Pa 

Densidade (ρ) 7860 kg/m³ 7860 kg/m³ 7860 kg/m³ 

Diâmetro externo (OD) 6⅝ in 4½ in 5.00 in 

Diâmetro interno (ID) 5.90 in 2.25 in 2.25 in 

Força de içamento (F) 1,55.106 N - - 

Força peso nos nós (P) -1417,3 N -2373,5 N -3115,9 N 

O pós-processamento do terceiro teste é representado pela Figura 5. 

 
Figura 5 - Pós-processamento dos dados do terceiro teste com mil elementos. 



Nome do Aluno-Título do Trabalho (ano)  7 

 

4. Conclusão 

Foi possível obter os resultados desejados, com os gráficos do pós-processamento do cálculo de 

tensões pelo MEF sendo representados por mapas de cores de forma a facilitar a visualização dos dados 

numéricos obtidos. 

4.1. Contribuições do trabalho 

Com este trabalho, esperou-se mostrar as ferramentas necessárias para realizar a produção de códigos 

simples que possam fornecer maneiras para visualizar dados obtidos de diversas formas. A utilização de 

colunas verticais da indústria do petróleo é um exemplo de aplicação dessas ferramentas. 

4.2. Trabalhos futuros 

Este trabalho realizou a análise do pós-processamento de exemplos estáticos, porém, com algumas 

mudanças seria possível realizar análises dinâmicas. 

Seria necessário definir um conjunto de forças e realizar iterações no processamento para se obter uma 

imagem de pós-processamento para um momento diferente, com uma força diferente. 

5. Conclusão 

ABREU, F.; CATABRIGA, L. Problemas de interação fluido-estrutura via método dos elementos finitos utilizando a 

Biblioteca FEniCS. 2017. 

 

LYONS, W. C.; PLISGA, G. J. Standard Handbook of Petroleum & Natural Gas Engineering. 2005. 

 

PENNA, S. Pós-processador para Modelos Bidimensionais não-lineares do Método dos Elementos Finitos. 2007. 

 

STEFANUTO, G., FILHO, S., DE LUCCA, J. E., ALVES, A. M. O impacto do Software Livre e de Código Aberto 

(SL/CA) nas Condições de Apropriabilidade na Indústria de Software Brasileira. 2005. 

 

VAISBERG, O.; VINCKÉ, O.; PERRIN, O.; SARDA, J.P.; FAŸ, J.B. Fatigue of Drillstring: State of the Art. 2002. 

 


	1 Introdução
	1.1 Objetivo
	1.2 Justificativa
	1.3 Organização do trabalho

	2 Revisão Bibliográfica
	2.1 Método dos elementos finitos
	2.2 Implementação computacional do Método dos elementos finitos
	2.2.1 Abordagem histórica da implementação computacional do MEF

	2.3 Python
	2.4 Pós-processamento em Python
	2.4.1 Matplotlib

	2.5 Tensões em colunas verticais

	3 METODOLOGIA
	3.1 Processamento
	3.1.1 Dados de entrada
	3.1.2 Leitura dos dados
	3.1.3 Arranjos
	3.1.4 Rigidez
	3.1.5 Carregamento
	3.1.6 Sistema linear
	3.1.7 Vetores finais

	3.2 Pós-processamento
	3.2.1 Tratamento dos dados
	3.2.2 Setup dos gráficos


	4 RESULTADOS
	4.1 Teste com 10 elementos
	4.2 Teste com 100 elementos
	4.3 Teste com 1000 elementos
	4.4 Tempo de processamento

	5 Conclusão
	5.1 Contribuições do trabalho
	5.2 Trabalhos futuros

	Referências
	Apêndice A - Função principal do pós-processamento
	1 Introdução (1)
	1.1 Objetivo
	1.2 Justificativa
	1.3 Organização do trabalho

	2 Revisão Bibliográfica (1)
	2.1 Método dos elementos finitos
	2.2 Implementação computacional do Método dos elementos finitos
	2.2.1 Abordagem histórica da implementação computacional do MEF

	2.3 Python
	2.4 Pós-processamento em Python
	2.4.1 Matplotlib

	2.5 Tensões em colunas verticais

	3 METODOLOGIA (1)
	3.1 Processamento
	3.1.1 Dados de entrada
	3.1.2 Leitura dos dados
	3.1.3 Arranjos
	3.1.4 Rigidez
	3.1.4.1 Rigidez elementar
	3.1.4.2 Rigidez global

	3.1.5 Carregamento
	3.1.6 Sistema linear
	3.1.7 Vetores finais

	3.2 Pós-processamento
	3.2.1 Tratamento dos dados
	3.2.2 Setup dos gráficos


	4 RESULTADOS (1)
	4.1 Teste com 10 elementos
	4.2 Teste com 100 elementos
	4.3 Teste com 1000 elementos
	4.4 Tempo de processamento

	5 Conclusão (1)
	5.1 Contribuições do trabalho
	5.2 Trabalhos futuros

	Referências (1)
	Apêndice A -  Função principal do pós-processamento

	TCC2020-15_HugoVeridiano_AS.pdf.pdf
	Universidade de São Paulo
	Engenharia de Petróleo – Escola Politécnica
	Número: 9882387USP   Data: 16/11/2020
	Pós-processamento de código de elementos finitos na anális de colunas de perfuração
	Hugo Veridiano
	Resumo
	Abstract
	1. Introdução
	2. Metodologia
	2.1. Processamento
	2.2. Pós-processamento
	3. Resultados
	3.1. Teste com 10 elementos
	3.2. Teste com 100 elementos
	3.3. Teste com 1000 elementos
	4. Conclusão
	4.1. Contribuições do trabalho
	4.2. Trabalhos futuros
	5. Conclusão


